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Foreword

Deep Learning has come a really long way. From the birth of the idea to 

understand human mind and the concept of associationism — how we 

perceive things and how relationships of objects and views influence our 

thinking and doing, to the modelling of associationism which started in 

the 1870s when Alexander Bain introduced the first concert of Artificial 

Neural Networks by grouping the neurons.

Fast forward it to today 2018 and we see how Deep Learning has 

dramatically improved and is in all forms of life — from object detection, 

speech recognition, machine translation, autonomous vehicles, face 

detection and the use of face detection from mundane tasks such as 

unlocking your iPhoneX to doing more profound tasks such as crime 

detection and prevention.

Convolutional Neural Networks and Recurrent Neural Networks 

are shining brightly as they continue to help solve the world problems 

in literally all industry areas such as Automotive & Transportation, 

Healthcare & Medicine, Retail to name a few. Great progress is being made 

in these areas and just metrics like these say enough about the palpability 

of the deep learning industry:

–– Number of Computer Science academic papers have soared to almost 

10x since 1996

–– VCs are investing 6x more in AI startups since 2000

–– There are 14x more active AI startups since 2000

–– AI related jobs market is hiring 5x more since 2013 and Deep Learning is 

the most sought after skill in 2018
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–– 84% of enterprises believe investing in AI will give them a great competi-

tive edge

And finally,

–– the error rate of image classification has dropped from 28% in 2012 to 

2.5% in 2017 and it is going down all the time!

Still the research community is not satisfied. We are pushing 

boundaries and I am moving ahead with my peers to develop models 

around the bright and shiny Capsule Networks and give Deep Learning 

a huge edge. I am not the only one in this battle. It is with great pleasure I 

put this foreword for Navin, a respected professional in the Deep Learning 

community I have come to know so well.

His book is coming just at the right moment. The industry as well as 

learners are in need of practical means to strengthen their knowledge in 

Deep Learning and apply in their job.

I am convinced that Navin’s book will give the learners what they need. 

TensorFlow is increasingly becoming the market leader and Keras too is 

being adopted by professionals to solve difficult problems in computer 

vision and NLP (Natural Language Processing). There is no single 

company on this planet who isn’t investing in these two application areas.

I look forward to this book being published and will be the first in line 

to get it. And my advice to you is: you should too!

ForewordForeword
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CHAPTER 1

Basics of TensorFlow
This chapter covers the basics of TensorFlow, the deep learning 

framework. Deep learning does a wonderful job in pattern recognition, 

especially in the context of images, sound, speech, language, and time-

series data. With the help of deep learning, you can classify, predict, 

cluster, and extract features. Fortunately, in November 2015, Google 

released TensorFlow, which has been used in most of Google’s products 

such as Google Search, spam detection, speech recognition, Google 

Assistant, Google Now, and Google Photos. Explaining the basic 

components of TensorFlow is the aim of this chapter.

TensorFlow has a unique ability to perform partial subgraph 

computation so as to allow distributed training with the help of 

partitioning the neural networks. In other words, TensorFlow allows model 

parallelism and data parallelism. TensorFlow provides multiple APIs. 

The lowest level API—TensorFlow Core—provides you with complete 

programming control.

Note the following important points regarding TensorFlow:

•	 Its graph is a description of computations.

•	 Its graph has nodes that are operations.

•	 It executes computations in a given context of a session.

•	 A graph must be launched in a session for any 

computation.
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•	 A session places the graph operations onto devices 

such as the CPU and GPU.

•	 A session provides methods to execute the graph 

operations.

For installation, please go to https://www.tensorflow.org/install/.

I will discuss the following topics:

 

�Tensors
Before you jump into the TensorFlow library, let’s get comfortable with 

the basic unit of data in TensorFlow. A tensor is a mathematical object 

and a generalization of scalars, vectors, and matrices. A tensor can be 

represented as a multidimensional array. A tensor of zero rank (order) is 

nothing but a scalar. A vector/array is a tensor of rank 1, whereas a  
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matrix is a tensor of rank 2. In short, a tensor can be considered to be an 

n-dimensional array.

Here are some examples of tensors:

•	 5: This is a rank 0 tensor; this is a scalar with shape [ ].

•	 [2.,5., 3.]: This is a rank 1 tensor; this is a vector 

with shape [3].

•	 [[1., 2., 7.], [3., 5., 4.]]: This is a rank 2 

tensor; it is a matrix with shape [2, 3].

•	 [[[1., 2., 3.]], [[7., 8., 9.]]]: This is a rank 3 

tensor with shape [2, 1, 3].

�Computational Graph and Session
TensorFlow is popular for its TensorFlow Core programs where it has two 

main actions.

•	 Building the computational graph in the construction 

phase

•	 Running the computational graph in the execution 

phase

Let’s understand how TensorFlow works.

•	 Its programs are usually structured into a construction 

phase and an execution phase.

•	 The construction phase assembles a graph that has 

nodes (ops/operations) and edges (tensors).

•	 The execution phase uses a session to execute ops 

(operations) in the graph.
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•	 The simplest operation is a constant that takes no 

inputs but passes outputs to other operations that do 

computation.

•	 An example of an operation is multiplication  

(or addition or subtraction that takes two matrices as 

input and passes a matrix as output).

•	 The TensorFlow library has a default graph to which 

ops constructors add nodes.

So, the structure of TensorFlow programs has two phases, shown here:

 

A computational graph is a series of TensorFlow operations arranged 

into a graph of nodes.

Let’s look at TensorFlow versus Numpy. In Numpy, if you plan to 

multiply two matrices, you create the matrices and multiply them. But in 

TensorFlow, you set up a graph (a default graph unless you create another 

graph). Next, you need to create variables, placeholders, and constant 

values and then create the session and initialize variables. Finally, you feed 

that data to placeholders so as to invoke any action.
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To actually evaluate the nodes, you must run the computational graph 

within a session.

A session encapsulates the control and state of the TensorFlow runtime.

The following code creates a Session object:

sess = tf.Session()

It then invokes its run method to run enough of the computational 

graph to evaluate node1 and node2.

The computation graph defines the computation. It neither computes 

anything nor holds any value. It is meant to define the operations 

mentioned in the code. A default graph is created. So, you don’t need to 

create it unless you want to create graphs for multiple purposes.

A session allows you to execute graphs or parts of graphs. It allocates 

resources (on one or more CPUs or GPUs) for the execution. It holds the 

actual values of intermediate results and variables.

The value of a variable, created in TensorFlow, is valid only within 

one session. If you try to query the value afterward in a second session, 

TensorFlow will raise an error because the variable is not initialized there.

To run any operation, you need to create a session for that graph. The 

session will also allocate memory to store the current value of the variable

Chapter 1  Basics of TensorFlow
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Here is the code to demonstrate:

 

�Constants, Placeholders, and Variables
TensorFlow programs use a tensor data structure to represent all data—

only tensors are passed between operations in the computation graph. You 

can think of a TensorFlow tensor as an n-dimensional array or list. A tensor 

has a static type, a rank, and a shape. Here the graph produces a constant 

result. Variables maintain state across executions of the graph.
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Generally, you have to deal with many images in deep learning, so you 

have to place pixel values for each image and keep iterating over all images.

To train the model, you need to be able to modify the graph to tune 

some objects such as weight and bias. In short, variables enable you to 

add trainable parameters to a graph. They are constructed with a type and 

initial value.

Let’s create a constant in TensorFlow and print it.

 

Here is the explanation of the previous code in simple terms:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a constant value (x) and assign it the 

numerical value 12.

	 3.	 Create a session for computing the values.

	 4.	 Run just the variable x and print out its current 

value.

The first two steps belong to the construction phase, and the last two 

steps belong to the execution phase. I will discuss the construction and 

execution phases of TensorFlow now.

You can rewrite the previous code in another way, as shown here:
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Now you will explore how you create a variable and initialize it. Here is 

the code that does it:

 

Here is the explanation of the previous code:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a constant value called x and give it the 

numerical value 12.

	 3.	 Create a variable called y and define it as being the 

equation 12+11.

	 4.	 Initialize the variables with tf.global_variables_

initializer().

	 5.	 Create a session for computing the values.

	 6.	 Run the model created in step 4.

	 7.	 Run just the variable y and print out its current 

value.

Here is some more code for your perusal:
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�Placeholders
A placeholder is a variable that you can feed something to at a later time. It 

is meant to accept external inputs. Placeholders can have one or multiple 

dimensions, meant for storing n-dimensional arrays.

 

Here is the explanation of the previous code:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a placeholder called x, mentioning the  

float type.

	 3.	 Create a tensor called y that is the operation of 

multiplying x by 10 and adding 500 to it. Note that 

any initial values for x are not defined.

	 4.	 Create a session for computing the values.

	 5.	 Define the values of x in feed_dict so as to run y.

	 6.	 Print out its value.

In the following example, you create a 2×4 matrix (a 2D array) for 

storing some numbers in it. You then use the same operation as before to 

do element-wise multiplying by 10 and adding 1 to it. The first dimension 

of the placeholder is None, which means any number of rows is allowed.

Chapter 1  Basics of TensorFlow



10

You can also consider a 2D array in place of the 1D array. Here is the 

code:

 

This is a 2×4 matrix. So, if you replace None with 2, you can see the 

same output.

 

But if you create a placeholder of [3, 4] shape (note that you will feed 

a 2×4 matrix at a later time), there is an error, as shown here:
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################# What happens in a linear model ##########

# Weight and Bias as Variables as they are to be tuned

W = tf.Variable([2], dtype=tf.float32)

b = tf.Variable([3], dtype=tf.float32)

# Training dataset that will be fed while training as Placeholders

x = tf.placeholder(tf.float32)

# Linear Model

y = W * x + b

Constants are initialized when you call tf.constant, and their values 

can never change. By contrast, variables are not initialized when you call 

tf.Variable. To initialize all the variables in a TensorFlow program, you 

must explicitly call a special operation as follows.

It is important to realize init is a handle to the TensorFlow subgraph 

that initializes all the global variables. Until you call sess.run, the 

variables are uninitialized.
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�Creating Tensors
An image is a tensor of the third order where the dimensions belong to 

height, width, and number of channels (Red, Blue, and Green).

Here you can see how an image is converted into a tensor:
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You can generate tensors of various types such as fixed tensors, 

random tensors, and sequential tensors.

�Fixed Tensors
Here is a fixed tensor:
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tf:.fill creates a tensor of shape (2×3) having a unique number.

 

tf.diag creates a diagonal matrix having specified diagonal elements.

 

tf.constant creates a constant tensor.

 

�Sequence Tensors
tf.range creates a sequence of numbers starting from the specified value 

and having a specified increment.

 

tf.linspace creates a sequence of evenly spaced values.
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�Random Tensors
tf.random_uniform generates random values from uniform distribution 

within a range.

tf.random_normal generates random values from the normal 

distribution having the specified mean and standard deviation.

 

 

 

Chapter 1  Basics of TensorFlow



16

Can you guess the result?

 

 

If you are not able to find the result, please revise the previous portion 

where I discuss the creation of tensors.

Here you can see the result:

 

�Working on Matrices
Once you are comfortable creating tensors, you can enjoy working on 

matrices (2D tensors).
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�Activation Functions
The idea of an activation function comes from the analysis of how a 

neuron works in the human brain (see Figure 1-1). The neuron becomes 

active beyond a certain threshold, better known as the activation potential. 

It also attempts to put the output into a small range in most cases.

Sigmoid, hyperbolic tangent (tanh), ReLU, and ELU are most popular 

activation functions.

Let’s look at the popular activation functions.
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Figure 1-1.  An activation function

�Tangent Hyperbolic and Sigmoid
Figure 1-2 shows the tangent hyperbolic and sigmoid activation functions.

Figure 1-2.  Two popular activation functions
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Here is the demo code:

 

�ReLU and ELU
Figure 1-3 shows the ReLU and ELU functions.

Figure 1-3.  The ReLU and ELU functions
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Here is the code to produce these functions:

 

�ReLU6
ReLU6 is similar to ReLU except that the output cannot be more than six ever.

 

Note that tanh is a rescaled logistic sigmoid function.
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�Loss Functions
The loss function (cost function) is to be minimized so as to get the best 

values for each parameter of the model. For example, you need to get the 

best value of the weight (slope) and bias (y-intercept) so as to explain the 

target (y) in terms of the predictor (X). The method is to achieve the best 

value of the slope, and y-intercept is to minimize the cost function/loss 

function/sum of squares. For any model, there are numerous parameters, 

and the model structure in prediction or classification is expressed in 

terms of the values of the parameters.

You need to evaluate your model, and for that you need to define the 

cost function (loss function). The minimization of the loss function can 

be the driving force for finding the optimum value of each parameter. For 
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regression/numeric prediction, L1 or L2 can be the useful loss function. 

For classification, cross entropy can be the useful loss function. Softmax or 

sigmoid cross entropy can be quite popular loss functions.

�Loss Function Examples
Here is the code to demonstrate:

 

�Common Loss Functions
The following is a list of the most common loss functions:

tf.contrib.losses.absolute_difference

tf.contrib.losses.add_loss
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tf.contrib.losses.hinge_loss

tf.contrib.losses.compute_weighted_loss

tf.contrib.losses.cosine_distance

tf.contrib.losses.get_losses

tf.contrib.losses.get_regularization_losses

tf.contrib.losses.get_total_loss

tf.contrib.losses.log_loss

tf.contrib.losses.mean_pairwise_squared_error

tf.contrib.losses.mean_squared_error

tf.contrib.losses.sigmoid_cross_entropy

tf.contrib.losses.softmax_cross_entropy

tf.contrib.losses.sparse_softmax_cross_entropy

tf.contrib.losses.log(predictions,labels,weight=2.0)
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�Optimizers
Now you should be convinced that you need to use a loss function to  

get the best value of each parameter of the model. How can you get the 

best value?

Initially you assume the initial values of weight and bias for the model 

(linear regression, etc.). Now you need to find the way to reach to the 

best value of the parameters. The optimizer is the way to reach the best 

value of the parameters. In each iteration, the value changes in a direction 

suggested by the optimizer. Suppose you have 16 weight values (w1, w2, 

w3, …, w16) and 4 biases (b1, b2, b3, b4). Initially you can assume every 

weight and bias to be zero (or one or any number). The optimizer suggests 

whether w1 (and other parameters) should increase or decrease in the 

next iteration while keeping the goal of minimization in mind. After many 

iterations, w1 (and other parameters) would stabilize to the best value 

(or values) of parameters.

In other words, TensorFlow, and every other deep learning framework, 

provides optimizers that slowly change each parameter in order to 

minimize the loss function. The purpose of the optimizers is to give 

direction to the weight and bias for the change in the next iteration. 

Assume that you have 64 weights and 16 biases; you try to change the 

weight and bias values in each iteration (during backpropagation) so that 

you get the correct values of weights and biases after many iterations while 

trying to minimize the loss function.

Selecting the best optimizer for the model to converge fast and to learn 

weights and biases properly is a tricky task.

Adaptive techniques (adadelta, adagrad, etc.) are good optimizers 

for converging faster for complex neural networks. Adam is supposedly 

the best optimizer for most cases. It also outperforms other adaptive 

techniques (adadelta, adagrad, etc.), but it is computationally costly. For 

sparse data sets, methods such as SGD, NAG, and momentum are not the 

best options; the adaptive learning rate methods are. An additional benefit 

Chapter 1  Basics of TensorFlow



26

is that you won’t need to adjust the learning rate but can likely achieve the 

best results with the default value.

�Loss Function Examples
Here is the code to demonstrate:
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�Common Optimizers
The following is a list of common optimizers:
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�Metrics
Having learned some ways to build a model, it is time to evaluate the 

model. So, you need to evaluate the regressor or classifier.

There are many evaluation metrics, among which classification 

accuracy, logarithmic loss, and area under ROC curve are the most popular 

ones.

Classification accuracy is the ratio of the number of correct predictions 

to the number of all predictions. When observations for each class are not 

much skewed, accuracy can be considered as a good metric.

tf.contrib.metrics.accuracy(actual_labels, predictions)

There are other evaluation metrics as well.

�Metrics Examples
This section shows the code to demonstrate.

Here you create actual values (calling them x) and predicted values 

(calling them y). Then you check the accuracy. Accuracy represents the 

ratio of the number of times the actual equals the predicted values and 

total number of instances.
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�Common Metrics
The following is a list of common metrics:
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CHAPTER 2

Understanding and  
Working with Keras
Keras is a compact and easy-to-learn high-level Python library for deep 

learning that can run on top of TensorFlow (or Theano or CNTK). It 

allows developers to focus on the main concepts of deep learning, such 

as creating layers for neural networks, while taking care of the nitty-gritty 

details of tensors, their shapes, and their mathematical details. TensorFlow 

(or Theano or CNTK) has to be the back end for Keras. You can use Keras 

for deep learning applications without interacting with the relatively 

complex TensorFlow (or Theano or CNTK). There are two major kinds 

of framework: the sequential API and the functional API. The sequential 

API is based on the idea of a sequence of layers; this is the most common 

usage of Keras and the easiest part of Keras. The sequential model can be 

considered as a linear stack of layers.

In short, you create a sequential model where you can easily add 

layers, and each layer can have convolution, max pooling, activation, drop-

out, and batch normalization. Let’s go through major steps to develop 

deep learning models in Keras.
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�Major Steps to Deep Learning Models
The four core parts of deep learning models in Keras are as follows:

	 1.	 Define the model. Here you create a sequential 

model and add layers. Each layer can contain one 

or more convolution, pooling, batch normalization, 

and activation function.

	 2.	 Compile the model. Here you apply the loss 

function and optimizer before calling the compile() 

function on the model.

	 3.	 Fit the model with training data. Here you train the 

model on the test data by calling the fit() function 

on the model.

	 4.	 Make predictions. Here you use the model to 

generate predictions on new data by calling 

functions such as evaluate() and predict().

There are eight steps to the deep learning process in Keras:

	 1.	 Load the data.

	 2.	 Preprocess the data.

	 3.	 Define the model.

	 4.	 Compile the model.

	 5.	 Fit the model.

	 6.	 Evaluate the model.

	 7.	 Make the predictions.

	 8.	 Save the model.
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�Load Data
Here is how you load data:

 

 

�Preprocess the Data
Here is how you preprocess data:
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�Define the Model
Sequential models in Keras are defined as a sequence of layers. You 

create a sequential model and then add layers. You need to ensure the 

input layer has the right number of inputs. Assume that you have 3,072 

input variables; then you need to create the first hidden layer with 512 

nodes/neurons. In the second hidden layer, you have 120 nodes/neurons. 

Finally, you have ten nodes in the output layer. For example, an image 

maps onto ten nodes that shows the probability of being label1 (airplane), 

label2 (automobile), label3 (cat), …, label10 (truck). The node of highest 

probability is the predicted class/label.

 

One image has three channels (RGB), and in each channel, the 

image has 32×32 = 1024 pixels. So, each image has 3×1024 = 3072 pixels 

(features/X/inputs).

With the help of 3,072 features, you need to predict the probability of 

label1 (Digit 0), label2 (Digit 1), and so on. This means the model predicts 

ten outputs (Digits 0–9) where each output represents the probability of 

the corresponding label. The last activation function (sigmoid, as shown 

earlier) gives 0 for nine outputs and 1 for only one output. That label is the 

predicted class for the image (Figure 2-1).

For example, 3,072 features ➤ 512 nodes ➤ 120 nodes ➤ 10 nodes.
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The next question is, how do you know the number of layers to use and 

their types? No one has the exact answer. What’s best for evaluation metrics is 

that you decide the optimum number of layers and the parameters and steps 

in each layer. A heuristics approach is also used. The best network structure 

is found through a process of trial-and-error experimentation. Generally, you 

need a network large enough to capture the structure of the problem.

Figure 2-1.  Defining the model
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In this example, you will use a fully connected network structure with 

three layers. A dense class defines fully connected layers.

In this case, you initialize the network weights to a small random 

number generated from a uniform distribution (uniform) in this 

case between 0 and 0.05 because that is the default uniform weight 

initialization in Keras. Another traditional alternative would be normal for 

small random numbers generated from a Gaussian distribution. You use or 

snap to a hard classification of either class with a default threshold of 0.5. 

You can piece it all together by adding each layer.

�Compile the Model
Having defined the model in terms of layers, you need to declare the loss 

function, the optimizer, and the evaluation metrics. When the model is 

proposed, the initial weight and bias values are assumed to be 0 or 1, a 

random normally distributed number, or any other convenient numbers. 

But the initial values are not the best values for the model. This means the 

initial values of weight and bias are not able to explain the target/label in 

terms of predictors (Xs). So, you want to get the optimal value for the model. 

The journey from initial values to optimal values needs a motivation, which 

will minimize the cost function/loss function. The journey needs a path 

(change in each iteration), which is suggested by the optimizer. The journey 

also needs an evaluation measurement, or evaluation metrics. 

 

Popular loss functions are binary cross entropy, categorical cross 

entropy, mean_squared_logarithmic_error and hinge loss. Popular 

optimizers are stochastic gradient descent (SGD), RMSProp, adam, 

adagrad, and adadelta. Popular evaluation metrics are accuracy, recall, 

and F1 score.
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In short, this step is aimed at tuning the weights and biases based on 

loss functions through iterations based on the optimizer evaluated by 

metrics such as accuracy.

�Fit the Model
Having defined and compiled the model, you need to make predications 

by executing the model on some data. Here you need to specify the 

epochs; these are the number of iterations for the training process to run 

through the data set and the batch size, which is the number of instances 

that are evaluated before a weight update. For this problem, the program 

will run for a small number of epochs (10), and in each epoch, it will 

complete 50(=50,000/1,000) iterations where the batch size is 1,000 and the 

training data set has 50,000 instances/images. Again, there is no hard rule 

to select the batch size. But it should not be very small, and it should be 

much less than the size of the training data set to consume less memory.

 

Chapter 2  Understanding and Working with Keras 



38

�Evaluate Model
Having trained the neural networks on the training data sets, you need 

to evaluate the performance of the network. Note that this will only give 

you an idea of how well you have modeled the data set (e.g., the train 

accuracy), but you won’t know how well the algorithm might perform 

on new data. This is for simplicity, but ideally, you could separate your 

data into train and test data sets for the training and evaluation of your 

model. You can evaluate your model on your training data set using the 

evaluation() function on your model and pass it the same input and 

output used to train the model. This will generate a prediction for each 

input and output pair and collect scores, including the average loss and 

any metrics you have configured, such as accuracy.

 

�Prediction
Once you have built and evaluated the model, you need to predict for 

unknown data.
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�Save and Reload the Model
Here is the final step:

 

 

�Optional: Summarize the Model
Now let’s see how to summarize the model.
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�Additional Steps to Improve Keras Models
Here are some more steps to improve your models:

	 1.	 Sometimes, the model building process does not 

complete because of a vanishing or exploding 

gradient. If this is the case, you should do the 

following:

	 2.	 Model the output shape.

�#Shape of the n-dim array (output of the model  

at the current position)

  model.output_shape

	 3.	 Model the summary representation.

model.summary()

	 4.	 Model the configuration.

model.get_config()

	 5.	 List all the weight tensors in the model.

model.get_weights()

Here I am sharing the complete code for the Keras model. Can you 

attempt to explain it?
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�Keras with TensorFlow
Keras provides high-level neural networks by leveraging a powerful and 

lucid deep learning library on top of TensorFlow/Theano. Keras is a great 

addition to TensorFlow as its layers and models are compatible with pure-

TensorFlow tensors. Moreover, it can be used alongside other TensorFlow 

libraries.

Here are the steps involved in using Keras for TensorFlow:

	 1.	 Start by creating a TensorFlow session and 

registering it with Keras. This means Keras will 

use the session you registered to initialize all the 

variables that it creates internally.

import TensorFlow as tf

sess = tf.Session()

from keras import backend as K

K.set_session(sess)

	 2.	 Keras modules such as the model, layers, and 

activation are used to build models. The Keras 

engine automatically converts these modules into 

the TensorFlow-equivalent script.

	 3.	 Other than TensorFlow, Theano and CNTK can be 

used as back ends to Keras.

	 4.	 A TensorFlow back end has the convention of 

making the input shape (to the first layer of your 

network) in depth, height, width order, where depth 

can mean the number of channels.

Chapter 2  Understanding and Working with Keras 
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	 5.	 You need to configure the keras.json file correctly 

so that it uses the TensorFlow back end. It should 

look something like this:

{

       "backend": "theano",

       "epsilon": 1e-07,

       "image_data_format": "channels_first",

       "floatx": "float32"

}

In next chapters, you will learn how to leverage Keras for working on 

CNN, RNN, LSTM, and other deep learning activities.

Chapter 2  Understanding and Working with Keras 
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CHAPTER 3

Multilayer Perceptron
Before you start learning about multilayered perceptron, you need to get a 

big-picture view of artificial neural networks. That’s what I’ll start with in 

this chapter.

�Artificial Neural Network
An artificial neural network (ANN) is a computational network (a system 

of nodes and the interconnection between nodes) inspired by biological 

neural networks, which are the complex networks of neurons in human 

brains (see Figure 3-1). The nodes created in the ANN are supposedly 

programmed to behave like actual neurons, and hence they are artificial 

neurons. Figure 3-1 shows the network of the nodes (artificial neurons) 

that make up the artificial neural network.
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The number of layers and the number of neurons/nodes per layer can 

be the main structural component of an artificial neural network. Initially, 

the weights (representing the interconnection) and bias are not good 

enough to make the decision (classification, etc.). It is like the brain of a 

baby who has no prior experience. A baby learns from experiences so as to 

be a good decision-maker (classifier). Experiences/data (labeled) helps the 

neural network of brains tune the (neural) weights and bias. The artificial 

neural network goes through the same process. The weights are tuned per 

iteration to create a good classifier. Since tuning and thereby getting the 

correct weights by hand for thousands of neurons is very time-consuming, 

you use algorithms to perform these duties.

That process of tuning the weights is called learning or training. This is 

the same as what humans do on a daily basis. We try to enable computers 

to perform like humans.

Let’s start exploring the simplest ANN model.

A typical neural network contains a large number of artificial neurons 

called units arranged in a series of different layers: input layer, hidden 

layer, and output layer (Figure 3-2).

Figure 3-1.  Artificial neural network

Chapter 3  Multilayer Perceptron
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Neural networks are connected, which means each neuron in the 

hidden layer is fully connected to every neuron in the previous input 

layer and to its next output layer. A neural network learns by adjusting the 

weights and biases in each layer iteratively to get the optimal results.

�Single-Layer Perceptron
A single-layer perceptron is a simple linear binary classifier. It takes inputs 

and associated weights and combines them to produce output that is used 

for classification. It has no hidden layers. Logistic regression is the single-

layer perceptron.

�Multilayer Perceptron
A multilayer perceptron (MLP) is a simple example of feedback artificial 

neural networks. An MLP consists of at least one hidden layer of nodes 

other than the input layer and the output layer. Each node of a layer other 

Figure 3-2.  Neural network
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than the input layer is called a neuron that uses a nonlinear activation 

function such as sigmoid or ReLU. An MLP uses a supervised learning 

technique called backpropagation for training, while minimizing the loss 

function such as cross entropy. It uses an optimizer for tuning parameters 

(weight and bias). Its multiple layers and nonlinear activation distinguish 

an MLP from a linear perceptron.

A multilayer perceptron is a basic form of a deep neural network.

Before you learn about MLPs, let’s look at linear models and logistic 

models. You can appreciate the subtle difference between linear, logistic, 

and MLP models in terms of complexity.

Figure 3-3 shows a linear model with one input (X) and one output (Y).

Figure 3-3.  Single-input vector

The single-input model has a vector X with weight W and bias b. The 

output, Y, is WX + b, which is the linear model.

Figure 3-4 shows multiple inputs (X1 and X2) and one output (Y).

Figure 3-4.  Linear model
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This linear model has two input features: X1 and X2 with the 

corresponding weights to each input feature being W1, W2, and bias b. The 

output, Y, is W1X1 + W2X2 + b.

�Logistic Regression Model
Figure 3-5 shows the learning algorithm that you use when the output label 

Y is either 0 or 1 for a binary classification problem. Given an input feature 

vector X, you want the probability that Y = 1 given the input feature X. This 

is also called as a shallow neural network or a single-layer (no hidden layer; 

only and output layer) neural network. The output layer, Y, is σ (Z), where Z 

is WX + b and σ is a sigmoid function.

Figure 3-5.  One input (X) and one output (Y)

Figure 3-6 shows the learning algorithm that you use when the output 

label Y is either 0 or 1 for a binary classification problem.

Figure 3-6.  Multiple inputs (X1 and X1) and one output (Y)
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Given input feature vectors X1 and X2, you want the probability that 

Y = 1 given the input features. This is also called a perceptron. The output 

layer, Y, is σ (Z), where Z is WX + b.
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Figure 3-7 shows a two-layer neural network, with a hidden layer and 

an output layer. Consider that you have two input feature vectors X1 and X2 

connecting to two neurons, X1’ and X2’. The parameters (weights) associated 

from the input layer to the hidden layer are w1, w2, w3, w4, b1, b2.

Figure 3-7.  Two-layer neural network
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X1’ and X2’ compute the linear combination (Figure 3-8).
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(2×1)(2×2)(2×1)(2×1) is the dimension of the input and hidden layers.

Figure 3-8.  Computation in the neural network

The linear input X1’ and X2’ passes through the activation unit a1 and 

a2 in the hidden layer.

a1 is σ (X1’) and a2 is σ(X2’), so you can also write the equation as follows:

a

a

X

X

1

2

1

2

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ús
’

’

Chapter 3  Multilayer Perceptron



52

The value forward propagates from the hidden layer to the output 

layer. Inputs a1 and a2 and parameters w5, w6, and b3 pass through the 

output layer a’ (Figure 3-9).

Figure 3-9.  Forward propagation

a’=[ ]é
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ú +[ ]w w

a

a
b5 6

1

2
3  creates a linear combination of (w5*a1 + 

w6*a2) + b3, which will pass through a nonlinear sigmoid function to the 

final output layer, Y.

y = ( )s a’

Let’s say the initial model structure in one dimension is Y = w*X + b, 

where the parameters w and b are weights and bias.
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Consider the loss function L(w, b) = 0.9 for the initial value of the 

parameters w = 1 and b = 1. You get this output: y = 1*X+1 & L(w ,b) = 0.9.

The objective is to minimize the loss by adjusting the parameters w 

and b. The errors will be backpropagated from the output layer to the 

hidden layer to the input layer to adjust the parameter through a learning 

rate and optimizer. Finally, we want to build a model (regressor) that can 

explain Y in terms of X.

To start the process of build a model, we initialize weight and bias. For 

convenience, w = 1, b = 1 (Initial value), (optimizer) stochastic gradient 

descent with learning rate (α = 0.01).

Here is step 1: Y = 1 * X + 1.

 

1.20               0.35

The parameters are adjusted to w = 1.20 and b = 0.35.

Here is step 2: Y1 = 1.20*X + 0.35.

 

1.24               0.31

The parameters are adjusted to w = 1.24 and b = 0.31.

Here is step 3: Y1 = 1.24*X + 0.31.

 

1.25               0.30
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After some iterations, the weight and bias become stable. As you see, 

the initial changes are high while tuning. After some iterations, the change 

is not significant.

L(w, b) gets minimized for w = 1.26 and b = 0.29; hence, the final model 

becomes the following:

Y = 1.26 * X + 0.29

Similarly, in two dimensions, you can consider the parameters, weight 

matrix and bias vector.

Let’s assume that initial weight matrix and bias vector as W =
é
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You iterate and backpropagate the error to adjust w and b.
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X  is the initial model. Weight matrix (2x2) 

and bias matrix(2x1) are tuned in each iteration. So, we can see change in 

weight and bias matrices

Here is step 1:

 

W B= , =
0 7 0 8

0 6 1 2

2 4

3 2

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Chapter 3  Multilayer Perceptron



55

 

Here is step 2:
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You can notice change in weight matrix(2x2) and bias matrix(2x1) in 
the iteration.
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The final model after w and b are adjusted is as follows:
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In this chapter, you learned how weight and bias are tuned in each 

iteration while keeping the aim of minimization of loss functions. That is 

done with the help of optimizers such as stochastic gradient descent.

In this chapter, we have understood ANN and MLP as the basic deep 

learning model. Here, we can see MLP as the natural progression from 

linear and logistic regression. We have seen how weight and bias are 

tuned in every iteration which happens in backpropagation. Without 

going into details of backpropagation, we have seen the action/result of 

backpropagation. In next two chapters, we can learn how to build MLP 

models in TensorFlow and in keras.
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CHAPTER 4

Regression to MLP 
in TensorFlow
People have been using regression and classifiers for a long time. Now it is time 

to switch to the topic of neural networks. A multilayered perceptron (MLP)  

is a simple neural network model where you can add one or more hidden 

layers between the input and output layers.

In this chapter, you will see how TensorFlow can help you build the 

models. You will start with the most basic model, which is a linear model. 

Logistic and MLP models are also discussed in this chapter.

�TensorFlow Steps to Build Models
In this section, I’ll discuss the steps to build models in TensorFlow. I will 

walk you through the steps here, and then you’ll see the code throughout 

this chapter:

	 1.	 Load the data.

	 2.	 Split the data into the train and test.

	 3.	 Normalize if needed.

	 4.	 Initialize placeholders that will contain predictors 

and the target.
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	 5.	 Create variables (weight and bias) that will be tuned up.

	 6.	 Declare model operations.

	 7.	 Declare the loss function and optimizer.

	 8.	 Initialize the variables and session.

	 9.	 Fit the model by using training loops.

	 10.	 Check and display the result with test data.

�Linear Regression in TensorFlow
First you need to understand the code for linear regression in TensorFlow. 

Figure 4-1 shows a basic linear model.

As shown in Figure 4-1, the weight (W) and bias (b) are to be tuned so 

as to get the right values of weight and bias. So, the weight (W) and bias (b)  

are the variables in the TensorFlow code; you will tune/modify them in 

each iteration until you get the stable (correct) values.

Figure 4-1.  Basic linear model

You need to create placeholders for X. Placeholders have a particular 

shape and contain a particular type.

When you have more than one feature, you will have a similar working 

model to Figure 4-2.
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In the following code, you will use the Iris data set from Seaborn, which 

has five attributes. You will consider the sepal length as your input and the 

petal length as the output value. The main aim of this regression model is to 

predict the petal length when you are given the sepal length value. X is the 

sepal length, and Y is the petal length.

A linear regression using TensorFlow on Iris data

 

 

 

Figure 4-2.  Linear model with multiple inputs
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If you run the code, you will see the output shown in Figure 4-3.

Figure 4-3.  Weights, bias, and loss at each step
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Figure 4-4 shows the plot for the predicted value of petal length.

Figure 4-4.  Petal length versus sepal length

�Logistic Regression Model
For classification, the simplest approach is logistic regression. In 

this section, you’ll learn how you can perform logistic regression in 

TensorFlow. Here you create the weight and bias as variables so that there 

is a scope of tuning/changing them per iteration. Placeholders are created 

to contain X. You need to create placeholders for X. Placeholders have a 

particular shape and contain a particular type, as shown in Figure 4-5.

Figure 4-5.  Chart of logistic regression model
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In the following code, you will use the Iris data set, which has five 

attributes. The fifth one is the target class. You will consider the sepal 

length and sepal width as the predictor attributes and the flower’s species 

as the target value. The main aim of this logistic regression model is to 

predict the kind of species when you are given the sepal length and sepal 

width values.

Create a Python file and import all the required libraries.
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If you run the previous code, the plot of cross entropy loss against each 

epoch looks like Figure 4-6.
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�Multilayer Perceptron in TensorFlow
A multilayer perceptron (MLP) is a simple example of feedback artificial 

neural networks. An MLP consists of at least one hidden layer of nodes 

other than input layer and output layer. Each node of a layer other than 

the input layer is called a neuron that uses a nonlinear activation function 

such as sigmoid or ReLU. MLP uses a supervised learning technique called 

backpropagation for training while minimizing the loss function such as 

cross entropy and using an optimizer for tuning parameters (weight and 

bias). Its multiple layers and non-linear activation distinguish MLP from a 

linear perceptron.

TensorFlow is well suited for building MLP models. In an MLP, you 

need to tune the weight and bias per iteration. This means the weight and 

bias keep changing until they become stable while minimizing the loss 

function. So, you can create the weight and bias as variables in TensorFlow. 

I tend to give them initial values (all 0s or all 1s or some random normally 

distributed values). Placeholders should have a particular type of value 

and a defined shape, as shown in Figure 4-7.

Figure 4-6.  Plot for cross entropy loss per epoch
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Import all the required libraries. Implementing MLP in TensorFlow.

 

 

 

 

 

Figure 4-7.  Flowchart for MLP
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Chapter 4  Regression to MLP in TensorFlow



68

If you will run this code, you’ll get the plot shown in Figure 4-8.

In this chapter, I discussed how you can build linear, logistic, and MLP 

models in TensorFlow in a systemic way.

Figure 4-8.  Plot for loss while training and testing

Chapter 4  Regression to MLP in TensorFlow



69© Navin Kumar Manaswi 2018 
N. K. Manaswi, Deep Learning with Applications Using Python,  
https://doi.org/10.1007/978-1-4842-3516-4_5

CHAPTER 5

Regression to MLP 
in Keras
You have been working on regression while solving machine learning 

applications. Linear regression and nonlinear regression are used to 

predict numeric targets, while logistic regression and other classifiers are 

used to predict non-numeric target variables. In this chapter, I will discuss 

the evolution of multilayer perceptrons.

Specifically, you will compare the accuracy generated by different 

models with and without using Keras.

�Log-Linear Model
Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.
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You will be using the Iris data set as the source of data. So, load the 

data set from Seaborn.

 

The Iris data set has five attributes. You will be using the first four 

attributes to predict the species, whose class is defined in the fifth attribute 

of the data set.

 

Using scikit-learn’s function, split the testing and training data sets.

 

##################################

# scikit Learn for (Log) Linear Regression #

##################################

Use the model.fit function to train the model with the training  

data set.

 

As the model is trained, you can predict the output of the test set.
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�Keras Neural Network for Linear Regression
Now, let’s build a Keras neural network model for linear regression.

 

 

Use the model.fit function to train the model with the training  

data set.

 

As the model is trained, you can predict the output of the test set.

 

Print the accuracy obtained by both models.
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If you run the code, you will see the following output:
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�Logistic Regression
In this section, I will share an example for the logistic regression so you can 

compare the code in scikit-learn with that in Keras (see Figure 5-1).

Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.

 

You will be using the Iris data set as the source of data. So, load the 

data set from scikit-learn.

 

Using scikit-learn’s function, split the testing and training data sets.

 

Figure 5-1.  Logistic regression used for classification
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�scikit-learn for Logistic Regression
Use the model.fit function to train the model with the training data set. 

After the model is trained, you can predict the output of the test set.

 

########################################

�Keras Neural Network for Logistic Regression
One-hot encoding transforms features to a format that works better with 

the classification and regression algorithms.
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Use the model.fit function to train the model with the training data set.

 

Use the model.evaluate function to evaluate the performance of the 

model.

 

Print the accuracy obtained by both models.

Accuracy for scikit-learn based model

 

The accuracy is 0.83.

Accuracy for keras model

 

The accuracy is 0.99.
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If you run the code, you will see the following output:

 

To give the real-life example, I will discuss some code that uses the 

Fashion MNIST data set, which is a data set of Zalando.com’s images 

consisting of a training set of 60,000 examples and a test set of 10,000 

examples. Each example is a 28×28 grayscale image associated with a label 

from ten classes.
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�Fashion MNIST Data: Logistic Regression 
in Keras
Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.

 

As mentioned, you will be using the Fashion MNIST data set. Store the 

data and the label in two different variables.

 

Normalize the data set, as shown here:
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Define the model, as shown here:

 

Save the model in an .h5 file (so that you can use it later directly with 

the load_model() function from keras.models) and print the accuracy of 

the model in the test set, as shown here:
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If you run the previous code, you will see the following output:

('train-images-idx3-ubyte.gz', <http.client.HTTPMessage object 

at 0x00000171338E2B38>)

_______________________________________________________________

Layer (type)                 Output Shape              Param #   

===============================================================

dense_59 (Dense)             (None, 256)               200960    

_______________________________________________________________

dropout_10 (Dropout)         (None, 256)               0         

_______________________________________________________________

dense_60 (Dense)             (None, 512)               131584    

_______________________________________________________________

dense_61 (Dense)             (None, 10)                5130      

===============================================================

Total params: 337,674

Trainable params: 337,674

Non-trainable params: 0

_______________________________________________________________

Train on 60000 samples, validate on 10000 samples

Epoch 1/2

60000/60000 [==============================] - loss: 0.5188 - 

acc: 0.8127 - val_loss: 0.4133 - val_acc: 0.8454

Epoch 2/2

60000/60000 [==============================] - loss: 0.3976 - 

acc: 0.8545 - val_loss: 0.4010 - val_acc: 0.8513

Test loss: 0.400989927697

Test accuracy: 0.8513
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�MLPs on the Iris Data
A multilayer perceptron is a minimal neural network model. In this 

section, I’ll show you the code.

�Write the Code
Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.

 

Load the data set by reading a CSV file using Pandas.

 

Assign numeric values to the classes of the data set.

 

Convert the data frame to an array.
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Split the data and the target and store them in two different variables.

 

Change the target format using Numpy.

 

�Build a Sequential Keras Model
Here you will build a multilayer perceptron model with one hidden layer.

•	 Input layer: The input layer contains four neurons, 

representing the features of an iris (sepal length, etc.).

•	 Hidden layer: The hidden layer contains ten neurons, 

and the activation uses ReLU.

•	 Output layer: The output layer contains three neurons, 

representing the classes of the Iris softmax layer.
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Compile the model and choose an optimizer and loss function for 

training and optimizing your data, as shown here:

 

Train the model using the model.fit function, as shown here:

 

Load and prepare the test data, as shown here:

 

Convert the string value to a numeric value, as shown here:

 

Convert the data frame to an array, as shown here:

 

Split x and y, in other words, the feature set and target set, as shown here:
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Make a prediction on the trained model, as shown here:

 

Calculate the accuracy, as shown here:

 

Print the accuracy generated by the model, as shown here:

 

If you run the code, you will see the following output:

Epoch 1/100

120/120 [==============================] - 0s - loss: 2.7240 - 

acc: 0.3667

Epoch 2/100

120/120 [==============================] - 0s - loss: 2.4166 - 

acc: 0.3667

Epoch 3/100

120/120 [==============================] - 0s - loss: 2.1622 - 

acc: 0.4083

Epoch 4/100

120/120 [==============================] - 0s - loss: 1.9456 - 

acc: 0.6583
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Epoch 98/100

120/120 [==============================] - 0s - loss: 0.5571 - 

acc: 0.9250

Epoch 99/100

120/120 [==============================] - 0s - loss: 0.5554 - 

acc: 0.9250

Epoch 100/100

120/120 [==============================] - 0s - loss: 0.5537 - 

acc: 0.9250

�MLPs on MNIST Data (Digit Classification)
MNIST is the standard data set to predict handwritten digits. In this 

section, you will see how you can apply the concept of multilayer 

perceptrons and make a handwritten digit recognition system.

Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.

 

Sone important variables are defined.
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Load the data set using the mnist.load_data() function.

 

The types of the training set and the test set are converted to float32.

 

The data sets are normalized; in other words, they are set to a Z-score.

 

Display the number of the training samples present in the data set and 

also the number of test sets available.

 

Convert class vectors to binary class matrices.
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Define the sequential model of the multilayer perceptron.

 

Use an optimizer.

 

The function to optimize is the cross entropy between the true label 

and the output (softmax) of the model.

 

Use the model.fit function to train the model.

 

Using the model, evaluate the function to evaluate the performance of 

the model.

 

Print the accuracy generated in the model.
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If you run the code, you will get the following output:

60000 train samples

10000 test samples

Train on 60000 samples, validate on 10000 samples

Epoch 1/20

13s - loss: 0.2849 - acc: 0.9132 - val_loss: 0.1149 - val_acc: 

0.9652

Epoch 2/20

11s - loss: 0.1299 - acc: 0.9611 - val_loss: 0.0880 - val_acc: 

0.9741

Epoch 3/20

11s - loss: 0.0998 - acc: 0.9712 - val_loss: 0.1121 - val_acc: 

0.9671

Epoch 4/20

Epoch 18/20

14s - loss: 0.0538 - acc: 0.9886 - val_loss: 0.1241 - val_acc: 

0.9814

Epoch 19/20

12s - loss: 0.0522 - acc: 0.9888 - val_loss: 0.1154 - val_acc: 

0.9829

Epoch 20/20

13s - loss: 0.0521 - acc: 0.9891 - val_loss: 0.1183 - val_acc: 

0.9824

Test score: 0.118255248802

Test accuracy: 0.9824

Now, it is time to create a data set and use a multilayer perceptron. 

Here you will create your own data set using the random function and run 

the multilayer perceptron model on the generated data.

Chapter 5  Regression to MLP in Keras



88

�MLPs on Randomly Generated Data
Create a new Python file and import the following packages. Make sure 

you have Keras installed on your system.

 

Generate the data using the random function.

 

Create a sequential model.

 

Compile the model.

 

Use the model.fit function to train the model.
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Evaluate the performance of the model using the model.evaluate 

function.

 

If you run the code, you will get the following output:

Epoch 1/20

1000/1000 [==============================] - 0s - loss: 

2.4432 - acc: 0.0970     

Epoch 2/20

1000/1000 [==============================] - 0s - loss: 

2.3927 - acc: 0.0850     

Epoch 3/20

1000/1000 [==============================] - 0s - loss: 

2.3361 - acc: 0.1190     

Epoch 4/20

1000/1000 [==============================] - 0s - loss: 

2.3354 - acc: 0.1000

Epoch 19/20

1000/1000 [==============================] - 0s - loss: 

2.3034 - acc: 0.1160     

Epoch 20/20

1000/1000 [==============================] - 0s - loss: 

2.3055 - acc: 0.0980     

100/100 [==============================] - 0s

In this chapter, I discussed how to build linear, logistic, and MLP 

models in Keras in a systemic way.
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CHAPTER 6

Convolutional Neural 
Networks
A convolutional neural network (CNN) is a deep, feed-forward artificial 

neural network in which the neural network preserves the hierarchical 

structure by learning internal feature representations and generalizing the 

features in the common image problems like object recognition and other 

computer vision problems. It is not restricted to images; it also achieves 

state-of-the-art results in natural language processing problems and 

speech recognition.

�Different Layers in a CNN
A CNN consists of multiple layers, as shown in Figure 6-1.

Figure 6-1.  Layers in a convolution neural network
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The convolution layers consist of filters and image maps. Consider the 

grayscale input image to have a size of 5×5, which is a matrix of 25 pixel 

values. The image data is expressed as a three-dimensional matrix of  

width × height × channels.

Note  An image map is a list of coordinates relating to a specific 
image.

Convolution aims to extract features from the input image, and 

hence it preserves the spatial relationship between pixels by learning 

image features using small squares of input data. Rotational invariance, 

translation invariance, and scale invariance can be expected. For example, 

a rotated cat image or rescaled cat image can be easily identified by a 

CNN because of the convolution step. You slide the filter (square matrix) 

over your original image (here, 1 pixel), and at each given position, you 

compute element-wise multiplication (between the matrices of the filter 

and the original image) and add the multiplication outputs to get the final 

integer that forms the elements of the output matrix.

Subsampling is simply the average pooling with learnable weights per 

feature map, as shown in Figure 6-2.
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As shown in Figure 6-2, filters have input weights and generate an 

output neuron. Let’s say you define a convolutional layer with six filters 

and receptive fields that are 2 pixels wide and 2 pixels high and use a 

default stride width of 1, and the default padding is set to 0. Each filter 

receives input from 2×2 pixels, section of image. In other words, that’s 4 

pixels at a time. Hence, you can say it will require 4 + 1 (bias) input weights.

The input volume is 5×5×3 (width × height × number of channel), there 

are six filters of size 2×2 with stride 1 and pad 0. Hence, the number of 

parameters in this layer for each filter has 2*2*3 + 1 = 13 parameters (added 

+1 for bias). Since there are six filters, you get 13*6 = 78 parameters.

Figure 6-2.  Subsampling
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Here’s a summary:

•	 The input volume is of size W1 × H1 × D1.

•	 The model requires hyperparameters: number of  

filters (f ), stride (S), amount of zero padding (P).

•	 This produces a volume of size W2 × H2 × D2.

•	 W2 = (W1-f+ 2P) /S + 1 = 4.

•	 H2 = (H1-f+2P)/S +1 = 4.

•	 D2 = Number of filters = f = 6.

The pooling layers reduce the previous layers’ activation maps. It is 

followed by one or more convolutional layers and consolidates all the 

features that were learned in the previous layers’ activation maps. This 

reduces the overfitting of the training data and generalizes the features 

represented by the network. The receptive field size is almost always set to 

2×2 and use a stride of 1 or 2 (or higher) to ensure there is no overlap. You 

will use a max operation for each receptive field so that the activation is the 

maximum input value. Here, every four numbers map to just one number. 

So, the number of pixels goes down to one-fourth of the original in this 

step (Figure 6-4).

Figure 6-3.  Input volume
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A fully connected layer is a feed-forward artificial neural network 

layer. These layers have a nonlinear activation function to output class 

prediction probabilities. They are used toward the end after all the features 

are identified and extracted by convolutional layers and have been 

consolidated by the pooling layers in the network. Here, the hidden and 

output layers are the fully connected layers.

�CNN Architectures
A CNN is a feed-forward deep neural network architecture comprised of 

a few convolutional layers, each followed by a pooling layer, activation 

function, and optionally batch normalization. It also comprises of the 

fully connected layers. As an image moves through the network, it gets 

smaller, mostly because of max pooling. The final layer outputs the class 

probabilities prediction.

Figure 6-4.  Maxpooling-reducing the number of pixels
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The past few years have seen many architectures being developed 

that have made tremendous progress in the field of image classification. 

Award-winning pretrained networks (VGG16, VGG19, ResNet50, Inception 

V3, and Xception) have been used for various image classification 

challenges including medical imaging. Transfer learning is the kind of 

practice where you use pretrained models in addition to a couple of layers. 

It can be used to solve image classification challenges in every field.

Figure 6-5.  CNN Architecture for Classification
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CHAPTER 7

CNN in TensorFlow
This chapter will demonstrate how to use TensorFlow to build a CNN 

model. A CNN model can help you build an image classifier that can 

predict/classify the images. In general, you create some layers in the model 

architecture with initial values of weight and bias. Then you tune weight 

and bias with the help of a training data set. There is another approach 

that involves using a pretrained model such as InceptionV3 to classify 

the images. You can use this transfer learning approach where you add 

some layers (whose parameter s are trained) on top of layers of pretrained 

models (with parameter values intact) to make very powerful classifiers.

In this chapter, I will use TensorFlow to show how to develop a 

convolution network for various computer vision applications. It is easier 

to express a CNN architecture as a graph of data flows. 

�Why TensorFlow for CNN Models?
In TensorFlow, images can be represented as three-dimensional arrays 

or tensors of shape (height, width and channels). TensorFlow provides 

the flexibility to quickly iterate, allows you to train models faster, and 

enables you to run more experiments. When taking TensorFlow models to 

production, you can run them on large-scale GPUs and TPUs.
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�TensorFlow Code for Building an Image 
Classifier for MNIST Data
In this section, I’ll take you through an example to understand how to 

implement a CNN in TensorFlow.

The following code imports MNIST data sets with 28×28 grayscale 

images of digits from the TensorFlow contrib package and loads all the 

required libraries. Here, the aim is to build the classifier to predict the digit 

given in the image.

from tensorflow.contrib.learn.python.learn.datasets.mnist 

import read_data_sets

from tensorflow.python.framework import ops

import tensorflow as tf

import numpy as np

You then start a graph session.

# Start a graph session

sess = tf.Session()

You load the MNIST data and create the train and test sets.

# Load data

from keras.datasets import mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

You then normalize the train and test set features.

# Z- score  or Gaussian Normalization

X_train = X_train - np.mean(X_train) / X_train.std()

X_test = X_test - np.mean(X_test) / X_test.std()

As this is a multiclass classification problem, it is always better to use 

the one-hot encoding of the output class values.
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# Convert labels into one-hot encoded vectors

num_class = 10

train_labels = tf.one_hot(y_train, num_class)

test_labels = tf.one_hot(y_test, num_class)

Let’s set the model parameters now as these images are grayscale. 

Hence, the depth of image (channel) is 1.

# Set model parameters

batch_size = 784

samples =500

learning_rate = 0.03

img_width = X_train[0].shape[0]

img_height = X_train[0].shape[1]

target_size = max(train_labels) + 1

num_channels = 1 # greyscale = 1 channel

epoch = 200

no_channels = 1

conv1_features = 30

filt1_features = 5

conv2_features = 15

filt2_features = 3

max_pool_size1 = 2 # NxN window for 1st max pool layer

max_pool_size2 = 2 # NxN window for 2nd max pool layer

fully_connected_size1 = 150
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Let’s declare the placeholders for the model. The input data features, 

target variable, and batch sizes can be changed for the training and 

evaluation sets.

# Declare model placeholders

x_input_shape = (batch_size, img_width, img_height, num_channels)

x_input = tf.placeholder(tf.float32, shape=x_input_shape)

y_target = tf.placeholder(tf.int32, shape=(batch_size))

eval_input_shape = (samples, img_width, img_height, num_channels)

eval_input = tf.placeholder(tf.float32, shape=eval_input_shape)

eval_target = tf.placeholder(tf.int32, shape=(samples))

Let’s declare the model variables’ weight and bias values for input and 

hidden layer’s neurons. 

# Declare model variables

W1 = tf.Variable(tf.random_normal([filt1_features,  

filt1_features, no_channels, conv1_features]))

b1 = tf.Variable(tf.ones([conv1_features]))

W2 = tf.Variable(tf.random_normal([filt2_features,  

filt2_features, conv1_features, conv2_features]))

b2 = tf.Variable(tf.ones([conv2_features]))

Let’s declare the model variables for fully connected layers and define 

the weights and bias for these last 2 layers.

# Declare model variables for fully connected layers

resulting_width = img_width // (max_pool_size1 * max_pool_size2)

resulting_height = img_height // (max_pool_size1 * max_pool_size2)

full1_input_size = resulting_width * resulting_height * conv2_

features

W3 = tf.Variable(tf.truncated_normal([full1_input_size,  

fully_connected_size1], stddev=0.1, dtype=tf.float32))
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b3 = tf.Variable(tf.truncated_normal([fully_connected_size1], 

stddev=0.1, dtype=tf.float32))

W_out = tf.Variable(tf.truncated_normal([fully_connected_size1, 

target_size], stddev=0.1, dtype=tf.float32))

b_out = tf.Variable(tf.truncated_normal([target_size], 

stddev=0.1, dtype=tf.float32))

Let’s create a helper function to define the convolutional and max 

pooling layers.

# Define helper functions for the convolution and maxpool layers:

def conv_layer(x, W, b):

    �conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], 

padding='SAME')

    conv_with_b = tf.nn.bias_add(conv, b)

    conv_out = tf.nn.relu(conv_with_b)

    return conv_out

def maxpool_layer(conv, k=2):

    �return tf.nn.max_pool(conv, ksize=[1, k, k, 1],  

strides=[1, k, k, 1], padding='SAME')

A neural network model is defined with two hidden layers and two 

fully connected layers. A rectified linear unit is used as the activation 

function for the hidden layers and the final output layers.

# Initialize Model Operations

def my_conv_net(input_data):

    # First Conv-ReLU-MaxPool Layer

    conv_out1 = conv_layer(input_data, W1, b1)

    maxpool_out1 = maxpool_layer(conv_out1)
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    # Second Conv-ReLU-MaxPool Layer

    conv_out2 = conv_layer(maxpool_out1, W2, b2)

    maxpool_out2 = maxpool_layer(conv_out2)

    �# Transform Output into a 1xN layer for next fully 

connected layer

    final_conv_shape = maxpool_out2.get_shape().as_list()

    �final_shape = final_conv_shape[1] * final_conv_shape[2] * 

final_conv_shape[3]

    �flat_output = tf.reshape(maxpool_out2, [final_conv_shape[0], 

final_shape])

    # First Fully Connected Layer

    �fully_connected1 = tf.nn.relu(tf.add(tf.matmul(flat_output, 

W3), b3))

    # Second Fully Connected Layer

    �final_model_output = tf.add(tf.matmul(fully_connected1, 

W_out), b_out)

    return(final_model_output)

model_output = my_conv_net(x_input)

test_model_output = my_conv_net(eval_input)

You will use a softmax cross entropy function (tends to work better for 

multiclass classification) to define the loss that operates on logits.

# Declare Loss Function (softmax cross entropy)

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=model_output, labels=y_target))

Let’s define the train and test sets’ prediction function.

# Create a prediction function

prediction = tf.nn.softmax(model_output)

test_prediction = tf.nn.softmax(test_model_output)
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To determine the model accuracy on each batch, let’s define the 

accuracy function.

# Create accuracy function

def get_accuracy(logits, targets):

    batch_predictions = np.argmax(logits, axis=1)

    num_correct = np.sum(np.equal(batch_predictions, targets))

    return(100. * num_correct/batch_predictions.shape[0])

Let’s declare the training step and define the optimizer function.

# Create an optimizer

my_optimizer = tf.train.AdamOptimizer(learning_rate, 0.9)

train_step = my_optimizer.minimize(loss)

Let’s initialize all the model variables declared earlier.

# Initialize Variables

varInit = tf.global_variables_initializer()

sess.run(varInit)

Let’s start training the model and loop randomly through the batches 

of data. You want to evaluate the model on the train and test set batches 

and record the loss and accuracy.

# Start training loop

train_loss = []

train_acc = []

test_acc = []

for i in range(epoch):

    random_index = np.random.choice(len(X_train), size=batch_size)

    random_x = X_train[random_index]

    random_x = np.expand_dims(random_x, 3)

    random_y = train_labels[random_index]   

    train_dict = {x_input: random_x, y_target: random_y}
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    sess.run(train_step, feed_dict=train_dict)

    �temp_train_loss, temp_train_preds = sess.run([loss, 

prediction], feed_dict=train_dict)

    temp_train_acc = get_accuracy(temp_train_preds, random_y)

    �eval_index = np.random.choice(len(X_test),  

size=evaluation_size)

    eval_x = X_test[eval_index]

    eval_x = np.expand_dims(eval_x, 3)

    eval_y = test_labels[eval_index]

    test_dict = {eval_input: eval_x, eval_target: eval_y}

    test_preds = sess.run(test_prediction, feed_dict=test_dict)

    temp_test_acc = get_accuracy(test_preds, eval_y)

The results of the model are recorded in the following format and 

printed in the output:

# Record and print results

train_loss.append(temp_train_loss)

train_acc.append(temp_train_acc)

test_acc.append(temp_test_acc)

print('Epoch # {}. Train Loss: {:.2f}. Train Acc : {:.2f} . 

temp_test_acc : {:.2f}'.format(i+1,temp_train_loss, 

temp_train_acc,temp_test_acc))

�Using a High-Level API for Building CNN 
Models
TFLearn, TensorLayer, tflayers, TF-Slim, tf.contrib.learn, Pretty Tensor, 

keras, and Sonnet are high-level TensorFlow APIs. If you use any of these 

high-level APIs, you can build CNN models in a few lines of code. So, you 

can explore any of these APIs for working smartly.
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CHAPTER 8

CNN in Keras
This chapter will demonstrate how to use Keras to build CNN models. 

A CNN model can help you build an image classifier that can predict 

and classify the images. In general, you create some layers in the model 

architecture with initial values of weight and bias. Then you tune the 

weight and bias variables with the help of a training data set. You will 

learn how to code in Keras in this context. There is another approach that 

involves using pretrained models such as InceptionV3 and ResNet50 that 

can classify the images.

Let’s define a CNN model and evaluate how well it performs. You 

will use a structure with a convolutional layer; then you will use max 

pooling and flatten out the network to fully connect the layers and make 

predictions. 

�Building an Image Classifier for MNIST Data 
in Keras
Here I will demonstrate the process of building a classifier for handwritten 

digits using the popular MNIST data set.

This task is a big challenge for playing with neural networks, but it can 

be managed on a single computer.

The MNIST database contains 60,000 training images and 10,000 

testing images.
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Start by importing Numpy and setting a seed for the computer’s 

pseudorandom number generator. This allows you to reproduce the results 

from your script.

import numpy as np

# random seed for reproducibility

np.random.seed(123)

Next, you import the sequential model type from Keras. This is simply 

a linear stack of neural network layers.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers import Conv2D

from keras.layers import MaxPooling2d

#Now we will import some utilities

from keras.utils import np_utils

#Fixed dimension ordering issue

from keras import backend as K

K.set_image_dim_ordering('th')

#Load image data from MNIST

#Load pre-shuffled MNIST data into train and test sets

(X_train,y_train),(X_test, y_test)=mnist.load_data()

#Preprocess imput data for Keras

# Reshape input data.

# reshape to be [samples][channels][width][height]

X_train=X_train.reshape(X_train.shape[0],1,28,28)

X_test=X_test.reshape(X_test.shape[0],1,28,28)
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# to convert our data type to float32 and normalize our database

X_train=X_train.astype('float32')

X_test=X_test.astype('float32')

print(X_train.shape)

# Z-scoring or Gaussian Normalization

X_train=X_train - np.mean(X_train) / X_train.std()

X_test=X_test – np.mean(X_test) / X_test.std()

#(60000, 1, 28, 28)

# convert 1-dim class arrays to 10 dim class metrices

#one hot encoding outputs

y_train=np_utils.to_categorical(y_train)

y_test-np_utils.to_categorical(y_test)

num_classes=y_test.shape[1]

print(num_classes)

#10

#Define a simple CNN model

print(X_train.shape)

#(60000,1,28,28)

�Define the Network Structure
The network structure is as follows:

•	 Network has a convolutional input layer, with 32 feature 

maps with a size of 5×5. The activation function is 

rectified linear unit.

•	 The max pool layer has a size of 2×2. 

•	 The dropout is set to 30 percent.

•	 You can flatten the layer.
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•	 The network has a fully connected layer with 240 units, 

and the activation function is an exponential linear unit.

•	 Last layer of the netowrk is a fully connected output layer 

with ten units, and the activation function is softmax.

Then you compile the model by using binary cross entropy as the loss 

function and adagrad as the optimizer.

�Define the Model Architecture
The architecture consists of a combination of the convolutional layer and 

max pooling layer and a dense layer at the end.

# create a model

     model=Sequential()

     �model.add(Conv2D(32, (5,5), input_shape=(1,28,28), 

activation='relu'))

     model.add(MaxPooling2D(pool_size=(2,2)))

     �model.add(Dropout(0.3))      # Dropout, one form of 

regularization

     model.add(Flatten())

     model.add(Dense(240,activation='elu'))

     model.add(Dense(num_classes, activation='softmax'))

     print(model.output_shape)

     (None, 10)

# Compile the model

model.compile(loss='binary_crossentropy', optimizer='adagrad', 

matrices=['accuracy'])
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Then you fit the model by using the training data sets by taking a 

batch size of 200. The model takes first 200 instances/rows (from the 1st 

to the 200th) from the training data set and trains the network. Then the 

model takes second 200 instances (from the 201st to the 400th) for the 

training network again. In this way, you propagate all instances through 

the networks. The model requires less memory as you train networks with 

fewer instances each time. But the small batch size doesn’t offer a good 

estimate of the gradient, and hence tuning the weight and bias can be 

challenge.

One epoch means one forward pass and one backward pass of all the 

training examples. It takes several iterations to complete one epoch.

Here, you have 60,000 training examples, and your batch size is 200, so 

it will take 300 iterations to complete 1 epoch.

# Fit the model

model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=1, batch_size=200)

# Evaluate model on test data

     # Final evaluation of the model

     scores =model.evaluate(X_test, y_test, verbose=0)

     print("CNN error: % .2f%%" % (100-scores[1]*100))

     # CNN Error: 17.98%

     # Save the model

     # save model

     model_json= model.to_join()

     with open("model_json", "w") as json_file:

     json_file.write(model_json)

     # serialize weights to HDFS

     model.save_weights("model.h5")
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�Building an Image Classifier with CIFAR-10 
Data
This section explains how you can build a classifier that can classify the ten 

labels of the CIFAR-10 data set using the Keras CNN model.

Note T he CIFAR-10 data set consists of 60,000 32×32 color 
images in 10 classes, with 6,000 images per class. There are 50,000 
training images and 10,000 test images.

�###########Building CNN Model with CIFAR10 data###################

# plot cifar10 instances

     from keras.datasets import cifar10

     from matplotlib import pyplot

     from scipy.misc import toimage

     import numpy

     from keras.models import Sequential

     from keras.layers import Dense

     from keras.layers import Dropout

     from keras.layers import Flatten

     from keras.layers import Conv2D

     from keras.layers import MaxPooling2d

     #Now we will import some utilities

     from keras.utils import np_utils

     from keras.layers.normalization import BatchNormalization

     #Fixed dimension ordering issue

     from keras import backend as K

     K.set_image_dim_ordering('th')

     # fix random seed for reproducibility

     seed=12
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     numpy.random.seed(seed)

     #Preprocess imput data for Keras

     # Reshape input data.

     # reshape to be [samples][channels][width][height]

     �X_train=X_train.reshape(X_train.shape[0],3,32,32).

astype('float32')

     �X_test=X_test.reshape(X_test.shape[0],3,32,32).

astype('float32')

     # Z-scoring or Gaussian Normalization

     X_train=X_train - np.mean(X_train) / X_train.std()

     X_test=X_test – np.mean(X_test) / X_test.std()

     # convert 1-dim class arrays to 10 dim class metrices

     #one hot encoding outputs

     y_train=np_utils.to_categorical(y_train)

     y_test-np_utils.to_categorical(y_test)

     num_classes=y_test.shape[1]

     print(num_classes)

     #10

     #Define a simple CNN model

     print(X_train.shape)

     #(50000,3,32,32)

�Define the Network Structure
The network structure is as follows:

•	 The convolutional input layer has 32 feature maps with 

a size of 5×5, and the activation function is a rectified 

linear unit.

•	 The max pool layer has a size of 2×2.
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•	 The convolutional layer has 32 feature maps with a size 

of 5×5, and the activation function is a rectified linear 

unit. 

•	 The network has batch normalization.

•	 The max pool layer has a size of 2×2.

•	 The dropout is set to 30 percent.

•	 You can flatten the layer.

•	 The fully connected layer has 240 units, and the 

activation function is an exponential linear unit.

•	 The fully connected output layer has ten units, and the 

activation function is softmax.

Then you fit the model by using the training data sets by taking a 

batch size of 200. You take the first 200 instances/rows (from the 1st to the 

200th) from the training data set and train the network. Then you take the 

second 200 instances (from the 201st to the 400th) to train the network 

again. In this way, you propagate all instances through the networks. One 

epoch means one forward pass and one backward pass of all the training 

examples. It takes several iterations to complete one epoch.

Here, you have 50,000 training examples, and your batch size is 200, so 

it will take 250 iterations to complete 1 epoch.

�Define the Model Architecture
A sequential model is created with a combination of convolutional and 

max pooling layers. Later a fully connected dense layer is attached.

# create a model

     model=Sequential()

     �model.add(Conv2D(32, (5,5), input_shape=(3,32,32), 

activation='relu'))
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     model.add(MaxPooling2D(pool_size=(2,2)))

     �model.add(Conv2D(32, (5,5), activation='relu', 

padding='same'))

     model.add(BatchNormalization())

     model.add(MaxPooling2D(pool_size=(2,2)))

     �model.add(Dropout(0.3))      # Dropout, one form of 

regularization

     model.add(Flatten())

     model.add(Dense(240,activation='elu'))

     model.add(Dense(num_classes, activation='softmax'))

     print(model.output_shape)

     model.compile(loss='binary_crossentropy', optimizer='adagrad')

     # fit model

     �model.fit(X_train, y_train, validation_data=(X_test,  

y_test), epochs=1, batch_size=200)

     # Final evaluation of the model

     scores =model.evaluate(X_test, y_test, verbose=0)

     print("CNN error: % .2f%%" % (100-scores[1]*100

�Pretrained Models
In this section, I will show how you can use pretrained models such as 

VGG and inception to build up a classifier.
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Inception-V3 pre-trained model can detect/classify objects of 22,000 

categories. It can detect/classify tray, torch, umbrella and others.

In many scenario, we need to build classifiers as per our requirement. 

For that, transfer learning is used where we use pre-trained model (used 

for feature extraction) and multiple neural.
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CHAPTER 9

RNN and LSTM
This chapter will discuss the concepts of recurrent neural networks (RNNs) 

and their modified version, long short-term memory (LSTM). LSTM is 

mainly used for sequence prediction. You will learn about the varieties of 

sequence prediction and then learn how to do time-series forecasting with 

the help of the LSTM model.

�The Concept of RNNs
A recurrent neural network is a type of artificial neural network that is best 

suited to recognizing patterns in sequences of data, such as text, video, 

speech, language, genomes, and time-series data. An RNN is an extremely 

powerful algorithm that can classify, cluster, and make predictions about 

data, particularly time series and text.

RNN can be seen as an MLP network with addition of loops to the 

architecture. In Figure 9-1, you can see that there is an input layer (with 

nodes such as x1, x2, and so on), a hidden layer (with nodes such as h1, 

h2, and so on), and an output layer (with nodes such as y1, y2, and so on). 

This is similar to the MLP architecture. The difference is that the nodes 

of the hidden layers are interconnected. In a vanilla (basic) RNN/LSTM, 

nodes are connected in one direction. This means that h2 depends on h1 

(and x2), and h3 depends on h2 (and x3). The node in the hidden layer is 

decided by the previous node in the hidden layer.
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Figure 9-1.  An RNN

Figure 9-2.  The sequence

This kind of architecture ensures that the output at t=n depends on the 

inputs at t=n, t=n-1, …, and t=1. In other words, the output depends on the 

sequence of data rather than a single piece of data (Figure 9-2).
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Figure 9-3 shows how the nodes of the hidden layer are connected to 

the nodes of the input layer.

Figure 9-3.  The connections

In an RNN, if the sequences are quite long, the gradients (which 

are essential for tuning the weight and bias) are computed during their 

training (backpropagation). They either vanish (multiplication of many 

small values less than 1) or explode (multiplication of many large values 

more than 1), causing the model to train very slowly.
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�The Concept of LSTM
Long short-term memory is a modified RNN architecture that tackles 

the problem of vanishing and exploding gradients and addresses the 

problem of training over long sequences and retaining memory. All RNNs 

have feedback loops in the recurrent layer. The feedback loops help 

keep information in “memory” over time. But, it can be difficult to train 

standard RNNs to solve problems that require learning long-term temporal 

dependencies. Since the gradient of the loss function decays exponentially 

with time (a phenomenon known as the vanishing gradient problem), it 

is difficult to train typical RNNs. That is why an RNN is modified in a way 

that it includes a memory cell that can maintain information in memory 

for long periods of time. The modified RNN is better known as LSTM. In 

LSTM, a set of gates is used to control when information enters memory, 

which solves the vanishing or exploding gradient problem.

The recurrent connections add state or memory to the network and 

allow it to learn and harness the ordered nature of observations within 

input sequences. The internal memory means outputs of the network are 

conditional on the recent context in the input sequence, not what has just 

been presented as input to the network.

�Modes of LSTM
LSTM can have one of the following modes:

•	 One-to-one model

•	 One-to-many model

•	 Many-to-one model

•	 Many-to-many model

In addition to these modes, synced many-to-many models are also 

being used, especially for video classification.
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Figure 9-4 shows a many-to-one LSTM. This implies that many inputs 

create one output in this model.

Figure 9-4.  Many-to-one LSTM

�Sequence Prediction
LSTM is best suited for sequence data. LSTM can predict, classify, and 

generate sequence data. A sequence means an order of observations, 

rather than a set of observations. An example of a sequence is a test series 

where the timestamps and values are in the order (chronologically) of 

the sequence. Another example is a video, which can be considered as a 

sequence of images or a sequence of audio clips.

Prediction based on the sequence of data is called the sequence 

prediction. Sequence prediction is said to have four types.

•	 Sequence numeric prediction

•	 Sequence classification

•	 Sequence generation

•	 Sequence-to-sequence prediction
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�Sequence Numeric Prediction
Sequence numeric prediction is predicting the next value for a given 

sequence. Its use cases are stock market forecasting and weather 

forecasting. Here’s an example:

•	 Input sequence: 3,5,8,12

•	 Output: 17

Input Output (Number)

3,5,8,12

LSTM

Sequence 
Predic�on Model

17

 

�Sequence Classification
Sequence classification predicts the class label for a given sequence. Its use 

cases are fraud detection (which uses the transaction sequence as input 

to classify/predict whether an account has been hacked or not) and the 

classification of students based on performance (the sequence of exam 

marks over the last six months chronologically). Here’s an example:

•	 Input sequence: 2,4,6,8

•	 Output: “Increasing”

Input Output (Label)

2,4,6,8
LSTM

Sequence 
Classification Model

“Increasing”
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�Sequence Generation
Sequence generation is when you generate a new output sequence that has 

the same properties as the input sequences in the input corpus. Its use 

cases are text generation (given 100 lines of a blog, generate the next line 

of the blog) and music generation (given the music examples, generate the 

new musical piece). Here’s an example:

•	 Input sequence: [3, 5,8,12], [4,6,9,13]

•	 Output: [5,7,10,14]

Input Output (Sequence)

LSTM

Sequence 
Genera�on Model

 

�Sequence-to-Sequence Prediction
Sequence-to-sequence prediction is when you predict the next sequence 

for a given sequence. Its use cases are document summarization and 

multistep time-series forecasting (predicting a sequence of numbers). 

Here’s an example:

•	 Input sequence: [3, 5,8,12,17]

•	 Output: [23,30,38]

Input Output (sequence)

LSTM

Sequence to 
Sequence Model
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As mentioned, LSTM is used for time-series forecasting in businesses.

Let’s go through an LSTM model. Assume that a CSV file is given where 

the first column is a timestamp and the second column is a value. It can 

represent sensor (IoT) data.

Given the time-series data, you have to predict values for the future.

�Time-Series Forecasting with the LSTM 
Model
Here is the complete example of time-series forecasting with LSTM:

# Simple LSTM for a time series data

import numpy as np

import matplotlib.pyplot as plt

from pandas import read_csv

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error

import pylab

# convert an array of values into a timeseries data

def create_timeseries(series, ts_lag=1):

    dataX = []

    dataY = []

    n_rows = len(series)-ts_lag

    for i in range(n_rows-1):

        a = series[i:(i+ts_lag), 0]

        dataX.append(a)

        dataY.append(series[i + ts_lag, 0])
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    X, Y = np.array(dataX), np.array(dataY)

    return X, Y

# fix random seed for reproducibility

np.random.seed(230)

# load dataset

dataframe = read_csv('sp500.csv', usecols=[0])

plt.plot(dataframe)

plt.show()

Figure 9-5 shows a plot of the data.

Figure 9-5.  Plot of the data

Here’s some more code:

# Changing datatype to float32 type

series = dataframe.values.astype('float32')

# Normalize the dataset

scaler = StandardScaler()

series = scaler.fit_transform(series)
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# split the datasets into train and test sets

train_size = int(len(series) * 0.75)

test_size = len(series) - train_size

train, test = series[0:train_size,:], series[train_

size:len(series),:]

# reshape the train and test dataset into X=t and Y=t+1

ts_lag = 1

trainX, trainY = create_timeseries(train, ts_lag)

testX, testY = create_timeseries(test, ts_lag)

# reshape input data to be [samples, time steps, features]

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.

shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

# Define the LSTM model

model = Sequential()

model.add(LSTM(10, input_shape=(1, ts_lag)))

model.add(Dense(1))

model.compile(loss='mean_squared_logarithmic_error', 

optimizer='adagrad')

# fit the model

model.fit(trainX, trainY, epochs=500, batch_size=30)

# make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

# rescale predicted values

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])
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# calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0], 

trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], 

testPredict[:,0]))

print('Test Score: %.2f RMSE' % (testScore))

# plot baseline and predictions

pylab.plot(trainPredictPlot)

pylab.plot(testPredictPlot)

pylab.show()

In Figure 9-6, you can see the plot of actual versus predicted time 

series. The part in orange is the training data, the part in blue is the test 

data, and the part in green is the predicted output.

Figure 9-6.  Plot of actual versus predicted time series

So far, we have learnt the concepts of RNN, LSTM and time series 

forecasting with LSTM model.
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LSTM has been used in text classification. We use LSTM (vanilla LSTM 

or bi-directional LSTM) for building text classifiers. First, text corpus is 

converted into numbers by using word (semantic) embedding such as 

word2vec or glove. Then, sequence classification is done through LSTM. 

This approach offers much more accuracy than typical bag of words or  

tf-idf followed by ML classifiers such as SVM, Random Forest. In 

chapter 11, we can see how LSTM can be used for classifiers.
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CHAPTER 10

Speech to Text 
and Vice Versa
In this chapter, you will learn about the importance of speech-to-text and 

text-to-speech conversion. You will also learn about the functions and 

components needed to do this type of conversion.

Specifically, I will cover the following:

•	 Why you would want to convert speech to text

•	 Speech as data

•	 Speech features that map speech to a matrix

•	 Spectrograms, which map speech to an image

•	 Building a classifier for speech recognition through 

mel-frequency cepstral coefficient (MFCC) features

•	 Building a classifier for speech recognition through 

spectrograms

•	 Open source approaches for speech recognition

•	 Popular cognitive service providers

•	 The future of speech of text
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�Speech-to-Text Conversion
Speech-to-text conversion, in layman’s terms, means that an app recognizes 

the words spoken by a person and converts the voice to written text. There 

are lots of reasons you would want to use Speech-to-Text conversion.

•	 Blind or physically challenged people can control 

different devices using only voice.

•	 You can keep records of meetings and other events by 

converting the spoken conversation to text transcripts.

•	 You can convert the audio in video and audio files to 

get subtitles of the words being spoken.

•	 You can translate words into another language by 

speaking into a device in one language and converting 

the text to speech in another language.

�Speech as Data
The first step of making any automated speech recognition system is to 

get the features. In other words, you identify the components of the audio 

wave that are useful for recognizing the linguistic content and delete all the 

other useless features that are just background noises.

Each person’s speech is filtered by the shape of their vocal tract and 

also by the tongue and teeth. What sound is coming out depends on this 

shape. To identify the phoneme being produced accurately, you need 

to determine this shape accurately. You could say that the shape of the 

vocal tract manifests itself to form an envelope of the short-time power 

spectrum. It’s the job of MFCCs to represent this envelope accurately.

Speech can also be represented as data by converting it to a 

spectrogram (Figure 10-1).
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�Speech Features: Mapping Speech 
to a Matrix
MFCCs are widely used in automated speech and speaker recognition. 

The mel scale relates the perceived frequency, or pitch, of a pure tone to its 

actual measured frequency.

You can convert an audio in frequency scale to the mel scale using the 

following formula:

M f f( ) = +( )1125 1 700ln /

To convert it back to frequency, use the following formula:

M m m- ( ) = ( ) -( )1 700 1125 1exp /

Figure 10-1.  Speech as data
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Here is the function to extract MFCC features in Python:

def mfcc�(signal,samplerate=16000,winlen=0.025,winstep=0.01, 

numcep=13, nfilt=26,nfft=512,lowfreq=0,highfreq=None, 

preemph=0.97, ceplifter=22,appendEnergy=True)

These are the parameters used:

•	 signal: This is the signal for which you need to 

calculate the MFCC features. It should be an array of 

N*1 (read a WAV file).

•	 samplerate: This is the signal’s sample rate at which 

you are working.

•	 winlen: This is the analysis window length in seconds. 

By default it is 0.025 second.

•	 winstep: This is the successive window step. By default 

it is 0.01 second.

•	 numcep: This is the number of ceptrum that the function 

should return. By default it is 13.

•	 nfilt: This is the number of filters in the filter bank. By 

default it is 26.

•	 nfft: This is the size of the fast Fourier transform (FFT). 

By default it is 512.

•	 lowfreq: This is the lowest band edge, in hertz. By 

default it is 0.

•	 highfreq: This is the highest band edge, in hertz. By 

default it is the sample rate divided by 2.
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•	 preemph: This applies a preemphasis filter with preemph 

as the coefficient. 0 means no filter. By default it is 0.97.

•	 ceplifter: This applies a lifter to the final cepstral 

coefficients. 0 means no lifter. By default it is 22.

•	 appendEnergy: The zeroth cepstral coefficient is 

replaced with the log of the total frame energy, if it is set 

to true.

This function returns a Numpy array containing features. Each row 

contains one feature vector.

�Spectrograms: Mapping Speech 
to an Image
A spectrogram is photographic or electronic representation of a spectrum. 

The idea is to convert an audio file into images and pass the images 

into deep learning models such as a CNN and LSTM for analysis and 

classification.

The spectrogram is computed as a sequence of FFTs of windowed data 

segments. A common format is a graph with two geometric dimensions; 

one axis represents time, and another axis represents frequency. A third 

dimension uses the color or size of point to indicate the amplitude of a 

particular frequency at a particular time. Spectrograms are usually created 

in one of two ways. They can be approximated as a filter bank that results 

from a series of band-pass filters. Or, in Python, there is a direct function 

that maps audio to a spectrogram.
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�Building a Classifier for Speech Recognition 
Through MFCC Features
To build a classifier for speech recognition, you need to have the python_

speech_features Python package installed.

You can use the command pip install python_speech_features to 

install this package.

The mfcc function creates a feature matrix for an audio file. To build a 

classifier that recognizes the voices of different people, you need to collect 

speech data of them in WAV format. Then you convert all the audio files 

into a matrix using the mfcc function. The code to extract the features from 

the WAV file is shown here:

 

If you run the previous code, you will get output in the following form:

[[ 7.66608682  7.04137131  7.30715423 ...,  9.43362359  9.11932984

   9.93454603]

 [ 4.9474559   4.97057377  6.90352236 ...,  8.6771281   8.86454547

   9.7975147 ]

 [ 7.4795622   6.63821063  5.98854983 ...,  8.78622734  8.805521

   9.83712966]

 ...,

 [ 7.8886269   6.57456605  6.47895433 ...,  8.62870034  8.79965464

   9.67997298]
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 [ 5.73028657  4.87985847  6.64977329 ...,  8.64089442  8.62887745

   9.90470194]

 [ 8.8449656   6.67098127  7.09752316 ...,  8.84914694  8.97807983

   9.45123015]]

Here, each row represents one feature vector.

Collect as many voice recordings of a person as you can and append 

the feature matrix of each audio file in this matrix.

This will act as your training data set.

Repeat the same steps with all the other classes.

Once the data set is prepared, you can fit this data into any deep 

learning model (that is used for classification) to classify the voices of 

different people.

Note T o see the full code of a classifier using MFCC features, you 
can visit www.navinmanaswi.com/SpeechRecognizer.

�Building a Classifier for Speech Recognition 
Through a Spectrogram
Using the spectrogram approach converts all the audio files to images 

(Figure 10-2), so all you have to do is convert all the sound files in the 

training data into images and feed those images to a deep learning model 

just like you do in a CNN.
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Here is the Python code to convert an audio file to a spectrogram:

 

Figure 10-2.  Spectogram of speech sample

Chapter 10  Speech to Text and Vice Versa



135

�Open Source Approaches
There are open source packages available for Python that perform 

speech-to-text and text-to-speech conversion.

The following are some open source speech-to-text conversion APIs:

•	 PocketSphinx

•	 Google Speech

•	 Google Cloud Speech

•	 Wit.ai

•	 Houndify

•	 IBM Speech to Text API

•	 Microsoft Bing Speech

Having used all of these, I can say that they work quite well; the 

American accent is especially clear.

If you are interested in evaluating the accuracy of the conversion, you 

need one metric: the word error rate (WER).

In the next section, I will discuss each API mentioned previously.

�Examples Using Each API
Let’s go through each API.

�Using PocketSphinx
PocketSphinx is an open source API used for speech-to-text conversions. It 

is a lightweight speech recognition engine, specifically tuned for handheld 

and mobile devices, though it works equally well on the desktop. Simply 

use the command pip install PocketSphinx to install the package.
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import speech_recognition as sr

from os import path

AUDIO_FILE = "MyAudioFile.wav"

r = sr.Recognizer()

with sr.AudioFile(AUDIO_FILE) as source:

 audio = r.record(source)

try:

   print("Sphinx thinks you said " + r.recognize_sphinx(audio))

except sr.UnknownValueError:

   print("Sphinx could not understand audio")

except sr.RequestError as e:

  print("Sphinx error; {0}".format(e))

===============================================================

�Using the Google Speech API
Google provides its own Speech API that can be implemented in Python 

code and can be used to create different applications.

# recognize speech using Google Speech Recognition

try:

    �print("Google Speech Recognition thinks you said " + 

r.recognize_google(audio))

except sr.UnknownValueError:

    print("Google Speech Recognition could not understand audio")

except sr.RequestError as e:

    �print("Could not request results from Google Speech 

Recognition service;{0}".format(e))
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�Using the Google Cloud Speech API
You can also use the Google Cloud Speech API for the conversion. Create 

an account on the Google Cloud and copy the credentials.

GOOGLE_CLOUD_SPEECH_CREDENTIALS = r"INSERT THE CONTENTS OF THE 

GOOGLE CLOUD SPEECH JSON CREDENTIALS FILE HERE" try:

     �print("Google Cloud Speech thinks you said " + 

r.recognize_google_cloud(audio, credentials_json=GOOGLE_

CLOUD_SPEECH_CREDENTIALS))

except sr.UnknownValueError:

    print("Google Cloud Speech could not understand audio")

except sr.RequestError as e:

    �print("Could not request results from Google Cloud Speech 

service; {0}".format(e))

�Using the Wit.ai API
The Wit.ai API enables you to make a speech-to-text converter. You need to 

create an account and then create a project. Copy your Wit.ai key and start 

coding.

#recognize speech using Wit.ai

WIT_AI_KEY = "INSERT WIT.AI API KEY HERE" # Wit.ai keys are 

32-character uppercase alphanumeric strings

try:

    �print("Wit.ai thinks you said " + r.recognize_wit(audio, 

key=WIT_AI_KEY))

except sr.UnknownValueError:

    print("Wit.ai could not understand audio")

except sr.RequestError as e:

    �print("Could not request results from Wit.ai service; {0}".

format(e))
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�Using the Houndify API
Similar to the previous APIs, you need to create an account at Houndify 

and get your client ID and key. This allows you to build an app that 

responds to sound.

# recognize speech using Houndify

HOUNDIFY_CLIENT_ID = "INSERT HOUNDIFY CLIENT ID HERE"  

# Houndify client IDs are Base64-encoded strings

HOUNDIFY_CLIENT_KEY = "INSERT HOUNDIFY CLIENT KEY HERE"  

# Houndify client keys are Base64-encoded strings

try:

    �print("Houndify thinks you said " + r.recognize_

houndify(audio, client_id=HOUNDIFY_CLIENT_ID, client_

key=HOUNDIFY_CLIENT_KEY))

except sr.UnknownValueError:

    print("Houndify could not understand audio")

except sr.RequestError as e:

    �print("Could not request results from Houndify service; 

{0}".format(e))

�Using the IBM Speech to Text API
The IBM Speech to Text API enables you to add IBM’s speech recognition 

capabilities to your applications. Log in to the IBM cloud and start your 

project to get an IBM username and password.

# IBM Speech to Text

# recognize speech using IBM Speech to Text

IBM_USERNAME = "INSERT IBM SPEECH TO TEXT USERNAME HERE" # IBM 

Speech to Text usernames are strings of the form XXXXXXXX-XXXX-

XXXX-XXXX-XXXXXXXXXXXX
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IBM_PASSWORD = "INSERT IBM SPEECH TO TEXT PASSWORD HERE" # IBM 

Speech to Text passwords are mixed-case alphanumeric strings

try:

    �print("IBM Speech to Text thinks you said " + r.recognize_

ibm(audio, username=IBM_USERNAME, password=IBM_PASSWORD))

except sr.UnknownValueError:

    print("IBM Speech to Text could not understand audio")

except sr.RequestError as e:

    �print("Could not request results from IBM Speech to Text 

service; {0}".format(e))

�Using the Bing Voice Recognition API
This API recognizes audio coming from a microphone in real time. Create 

an account on Bing.com and get a Bing Voice Recognition API key.

# recognize speech using Microsoft Bing Voice Recognition

BING_KEY = "INSERT BING API KEY HERE" # Microsoft Bing Voice 

Recognition API key is 32-character lowercase hexadecimal 

strings

try:

    �print("Microsoft Bing Voice Recognition thinks you said " + 

r.recognize_bing(audio, key=BING_KEY))

except sr.UnknownValueError:

    �print("Microsoft Bing Voice Recognition could not 

understand audio")

except sr.RequestError as e:

    �print("Could not request results from Microsoft Bing Voice 

Recognition service; {0}".format(e))

Once you have converted the speech into text, you cannot expect 

100 percent accuracy. To measure the accuracy, you can use the WER.

Chapter 10  Speech to Text and Vice Versa



140

�Text-to-Speech Conversion
This section of the chapter focuses on converting written text to an audio file.

�Using pyttsx
Using a Python package called pyttsx, you can convert text to audio.

Do a pip install pyttsx. If you are using python 3.6 then do 

pip3 install pyttsx3.

import pyttsx

engine = pyttsx.init()

engine.say("Your Message")

engine.runAndWait()

�Using SAPI
You can also use SAPI to do text-to-speech conversion in Python.

from win32com.client import constants, Dispatch

Msg = "Hi this is a test"

speaker = Dispatch("SAPI.SpVoice")  #Create SAPI SpVoice Object

speaker.Speak(Msg)                  #Process TTS

del speaker

�Using SpeechLib
You can take the input from a text file and convert it to audio using 

SpeechLib, as shown here:

from comtypes.client import CreateObject    

engine = CreateObject("SAPI.SpVoice")
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stream = CreateObject("SAPI.SpFileStream")

from comtypes.gen import SpeechLib    

infile = "SHIVA.txt"

outfile = "SHIVA-audio.wav"

stream.Open(outfile, SpeechLib.SSFMCreateForWrite)

engine.AudioOutputStream = stream

f = open(infile, 'r')

theText = f.read()

f.close()

engine.speak(theText)

stream.Close()

Many times, you have to edit the audio so that you can remove a voice 

from the audio file. The next section shows you how.

�Audio Cutting Code
Make a CSV file of audio that contains the comma-separated values of the 

details of the audio and perform the following using Python:

import wave

import sys

import os

import csv

origAudio = wave.open('Howard.wav', 'r') #change path

frameRate = origAudio.getframerate()

nChannels = origAudio.getnchannels()

sampWidth = origAudio.getsampwidth()

nFrames   = origAudio.getnframes()

filename =  'result1.csv' #change path
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exampleFile = open(filename)

exampleReader = csv.reader(exampleFile)

exampleData = list(exampleReader)

count = 0

for data in exampleData:

 #for selections in data:

    print('Selections ', data[4], data[5])

    count += 1

    if data[4] == 'startTime' and data[5] == 'endTime':

        print('Start time')

    else:

        start = float(data[4])

        end = float(data[5])

        origAudio.setpos(start*frameRate)

        �chunkData = origAudio.readframes(int((end-

start)*frameRate))

        �outputFilePath = 'C:/Users/Navin/outputFile{0}.wav'.

format(count) # change path

        chunkAudio = wave.open(outputFilePath, 'w')

        chunkAudio.setnchannels(nChannels)

        chunkAudio.setsampwidth(sampWidth)

        chunkAudio.setframerate(frameRate)

        chunkAudio.writeframes(chunkData)

        chunkAudio.close()

�Cognitive Service Providers
Let’s look at some cognitive service providers that help with speech 

processing.
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�Microsoft Azure
Microsoft Azure provides the following:

•	 Custom Speech Service: This overcomes speech 

recognition barriers such as speaking style, vocabulary, 

and background noise.

•	 Translator Speech API: This enables real-time speech 

translation.

•	 Speaker Identification API: This can identify the 

speakers based on a speech sample of each speaker in 

the given audio data.

•	 Bing Speech API: This converts audio to text, 

understands intent, and converts text back to speech 

for natural responsiveness.

�Amazon Cognitive Services
Amazon Cognitive Services provides Amazon Polly, a service that 

turns text into speech. Amazon Polly lets you create applications that 

talk, enabling you to build entirely new categories of speech-enabled 

products.

•	 47 voices and 24 languages can be used, and an Indian 

English option is provided.

•	 Tones such as whispering, anger, and so on, can be 

added to particular parts of the speech using Amazon 

effects.

Chapter 10  Speech to Text and Vice Versa



144

•	 You can instruct the system how to pronounce a 

particular phrase or word in a different way. For 

example, “W3C” is pronounced as World Wide Web 

Consortium, but you can change that to pronounce 

just the acronym. You can also provide the input text in 

SSML format.

�IBM Watson Services
There are two services from IBM Watson.

•	 Speech to text: U.S. English, Spanish, and Japanese

•	 Text to speech: U.S. English, U.K. English, Spanish, 

French, Italian, and German

�The Future of Speech Analytics
Speech recognition technology has been making a great progress. Every 

year, it is about 10 to 15 percent more accurate than the previous year. In 

the future, it will provide the most interactive interface for computers yet.

There are many applications that you will soon be witnessing in the 

marketplace, including interactive books, robotic control, and self-driving 

car interfaces. Speech data offers some exciting new possibilities because 

it is the future of the industry. Speech intelligence enables people to 

message, take or give orders, raise complaints and to do any work where 

they used to type manually. It offers a great customer experience and 

perhaps that is why all customer-facing departments and businesses tend 

to use speech applications very heavily. I can see a great future for speech 

application developers.
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CHAPTER 11

Developing Chatbots
Artificial intelligence systems that act as interfaces for human and 

machine interactions through text or voice are called chatbots.

The interactions with chatbots may be either straightforward or 

complex. An example of a straightforward interaction could be asking 

about the latest news report. The interactions can become more complex 

when they are about troubleshooting a problem with, say, your Android 

phone. The term chatbots has gained immense popularity in the past 

year and has grown into the most preferred platform for user interaction 

and engagement. A bot, an advanced form of a chatbot, helps automate 

“user-performed” tasks.

This chapter on chatbots will serve as an all-encompassing guide to 

the what, how, where, when, and why of chatbots!

Specifically, I will cover the following:

•	 Why you would want to use chatbots

•	 The designs and functions of chatbots

•	 The steps for building a chatbot

•	 Chatbot development using APIs

•	 The best practices of chatbots



146

�Why Chatbots?
It is important for a chatbot to understand what information a user is 

seeking, called the intent. Suppose a user wants to know the nearest 

vegetarian restaurant; the user can ask that question in many possible 

ways. A chatbot (specifically the intent classifier inside the chatbot) 

must be able to understand the intent because the user wants to get the 

right answer. In fact, to give the right answer, the chatbot must be able to 

understand the context, intent, entities, and sentiment. The chatbot has to 

even take account of whatever is discussed in the session. For example, the 

user might ask the question “What is the price of chicken biryani there?” 

Though the user has asked for a price, the chat engine can misunderstand 

and assume the user is looking for a restaurant. So, in response, the 

chatbot may provide the name of the restaurant.

�Designs and Functions of Chatbots
A chatbot stimulates intelligent conversations with humans through the 

application of AI.

The interface through which conversation takes place is facilitated via 

either spoken or written text. Facebook Messenger, Slack, and Telegram 

make use of chatbot messaging platforms. They serve many purposes, 

including ordering products online, investing and managing finances, 

and so on. An important aspect of chatbots is that they make contextual 

conversation a possibility. The chatbots converse with users in a way 

similar to how human beings converse in their daily lives. Though it is 

possible for chatbots to converse contextually, they still have a long way to 

go in terms of communicating contextually with everything and anything. 

But chat interfaces are making use of language to connect the machine 

to the man, helping people get things done in a convenient manner by 

providing information in a contextual manner.
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Moreover, chatbots are redefining the way businesses are being 

conducted. From reaching out to the consumers to welcoming them to 

the ecosystem of the business to providing information to the consumers 

about various products and their features, chatbots are helping with it all. 

They are emerging as the most convenient way of dealing with consumers 

in a timely and satisfactory manner.

�Steps for Building a Chatbot
A chatbot is built to communicate with users and give them the feeling that 

they are communicating with a human and not a bot. But when users are 

giving input, it is common that they will not give input in the proper way. 

In other words, they may enter unnecessary punctuation marks, or there 

may be different ways of asking the same question.

For example, for “Restaurants near me?” a user could input 

“Restaurants beside me?” or “Find a nearby restaurant.”

Therefore, you need to preprocess the data so that the chatbot engine 

can easily understand it. Figure 11-1 shows the process, which is detailed 

in the following sections.

Figure 11-1.  A flowchart to show how a chatbot engine processes an 
input string and gives a valid reply.
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�Preprocessing Text and Messages
Preprocessing text and messages includes several steps, covered next.

�Tokenization

Chopping up sentences into single words (called tokens) is called 

tokenization. In Python, generally a string is tokenized and stored in a list.

For example, the sentence “Artificial intelligence 

is all about applying mathematics” becomes the 

following:

[“Artificial”, “intelligence”, “is”, “all”, “about”, 

“applying”, “mathematics”]

Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

l = "Artificial intelligence is all about applying mathematics"

token = TreebankWordTokenizer().tokenize(l)

print(token)

�Removing Punctuation Marks

You can also remove unnecessary punctuation marks in sentences.

For example, the sentence “Can I get the list of 

restaurants, which gives home delivery.” becomes 

the following:

“Can I get the list of restaurants which gives home 

delivery.”
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Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

from nltk.corpus import stopwords

l = "Artificial intelligence is all about applying 

mathematics!"

token = TreebankWordTokenizer().tokenize(l)

output = []

output = [k for k in token if k.isalpha()]

print(output)

�Removing Stop Words

Stop words are the words present in a sentence that don’t make much 

difference if removed. Though the format of the sentence changes, this 

helps a lot in natural language understanding (NLU).

For example, the sentence “Artificial intelligence 

can change the lifestyle of the people.” becomes the 

following after removing stop words:

“Artificial intelligence change lifestyle people.”

Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

from nltk.corpus import stopwords

l = "Artificial intelligence is all about applying mathematics"

token = TreebankWordTokenizer().tokenize(l)

stop_words = set(stopwords.words('english'))

output= []

for k in token:

    if k not in stop_words:

        output.append(k)

print(output)

Chapter 11  Developing Chatbots



150

Which words are considered as the stop words can vary. There are 

some predefined sets of stop words provided by Natural Language Toolkit 

(NLTK), Google, and more.

�Named Entity Recognition

Named entity recognition (NER), also known as entity identification, is the 

task of classifying entities in text into predefined classes such as the name 

of a country, the name of a person, and so on. You can also define your 

own classes.

For example, applying NER to the sentence “Today’s 

India vs Australia cricket match was fantastic.” gives 

you the following output:

[Today’s]Time [India] Country vs [Australia] Country 

[cricket] Game match was fantastic.

To run the code for NER, you need to download and import the 

necessary packages, as mentioned in the following code.

Using Stanford NER

To run the code, download english.all.3class.distsim.crf.ser.gz 

and stanford-ner.jar files.

from nltk.tag import StanfordNERTagger

from nltk.tokenize import word_tokenize

StanfordNERTagger("stanford-ner/classifiers/english.all.3class.

distsim.crf.ser.gz",

"stanford-ner/stanford-ner.jar")

text = "Ron was the founder of Ron Institute at New york"

text = word_tokenize(text)

ner_tags = ner_tagger.tag(text)

print(ner_tags)
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Using MITIE NER (Pretrained)

Download the ner_model.dat file of MITIE to run the code.

from mitie.mitie import *

from nltk.tokenize import word_tokenize

print("loading NER model...")

ner = named_entity_extractor("mitie/MITIE-models/english/ 

ner_model.dat".encode("utf8"))

text = "Ron was the founder of Ron Institute at New york".

encode("utf-8")

text = word_tokenize(text)

ner_tags = ner.extract_entities(text)

print("\nEntities found:", ner_tags)

for e in ner_tags:

       range = e[0]

       tag = e[1]

       entity_text = " ".join(text[i].decode() for i in range)

       print( str(tag) + " : " + entity_text)

Using MITIE NER (Self-Trained)

Download the total_word_feature_extractor.dat file of MITIE 

(https://github.com/mit-nlp/MITIE) to run the code.

from mitie.mitie import *

sample = ner_training_instance([b"Ron", b"was", b"the", b"founder", 

b"of", b"Ron", b"Institute", b"at", b"New", b"York", b"."])

sample.add_entity(range(0, 1), "person".encode("utf-8"))

sample.add_entity(range(5, 7), "organization".encode("utf-8"))

sample.add_entity(range(8, 10), "Location".encode("utf-8"))
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trainer = ner_trainer("mitie/MITIE-models/english/total_word_

feature_extractor.dat".encode("utf-8"))

trainer.add(sample)

ner = trainer.train()

tokens = [b"John", b"was", b"the", b"founder", b"of", b"John", 

b"University", b"."]

entities = ner.extract_entities(tokens)

print ("\nEntities found:", entities)

for e in entities:

      range = e[0]

      tag = e[1]

      entity_text = " ".join(str(tokens[i]) for i in range)

      print ("    " + str(tag) + ": " + entity_text)

�Intent Classification

Intent classification is the step in NLU where you try to understand what 

the user wants. Here are two examples of input to a chatbot to find places 

nearby:

•	 “I need to buy groceries.”: The intent is to look for a 

grocery store nearby.

•	 “I want to have vegetarian food.”: The intent is to look 

for restaurants nearby, ideally vegetarian ones.

Basically, you need to understand what the user is looking for and 

accordingly classify the request into a certain category of intent (Figure 11-2).
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To do this, you need to train a model to classify requests into intents 

using an algorithm, going from sentences to vectors to a model.

Word Embedding

Word embedding is the technique of converting text to numbers. It is 

difficult to apply any algorithm in text. Hence, you have to convert it to 

numbers.

The following are different types of word embedding techniques.

Figure 11-2.  General flow of intent classification, from sentences to 
vectors to a model
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Count Vector

Suppose you have three documents (D1, D2, and D3) and there are N 

unique words in the group of documents. You create a (D×N) matrix, 

called C, which is known as the count vector. Each entry of the matrix is the 

frequency of the unique word in that document.

Let’s see this using an example.

D1: Pooja is very lazy.

D2: But she is intelligent.

D3: She hardly comes to class.

Here, D=3 and N=12.

The unique words are hardly, lazy, But, to, Pooja, she, intelligent, 

comes, very, class, and is.

Hence, the count vector, C, will be the following:

Hardly laziest But to Pooja she intelligent comes very class is

D1 0 1 0 0 1 0 0 0 1 0 1

D2 0 0 1 0 0 1 1 0 0 0 1

D3 1 0 0 1 0 1 0 1 0 1 0

Term Frequency-Inverse Document Frequency (TF-IDF)

For this technique, you give each word in the sentence a number 

depending upon how many times that word occurs in that sentence and 

also depending upon the document. Words occurring many times in a 

sentence and not so many times in a document will have high values.
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For example, consider a set of sentences:

•	 “I am a boy.”

•	 “I am a girl.”

•	 “Where do you live?”

TF-IDF transforms the feature set for the previous sentences, as  

shown here:

Am Boy Girl Where do you live

1. 0.60 0.80 0 0 0 0 0

2. 0.60 0 0.80 0 0 0 0

3. 0 0 0 0.5 0.5 0.5 0.5

You can import the TFIDF package and use it to create this table.

Now let’s see some sample code. You can use a support vector classifier 

on the TF-IDF transformed features of the request string.

#import required packages

import pandas as pd

from random import sample

from sklearn.preprocessing import LabelEncoder

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import f1_score, accuracy_score

# read csv file

data = pd.read_csv("intent1.csv")

print(data.sample(6))
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Before continuing with the code, here’s an example of the data set:

Description (Message) intent_label (Target)

Good Non-Veg restaurant near me 0

I am looking for a hospital 1

Good hospital for Heart operation 1

International school for kids 2

Non-Veg restaurant around me 0

School for small Kids 2

In this example, these are the values to use:

•	 0 means looking for a restaurant.

•	 1 means looking for a hospital.

•	 2 means looking for a school.

Now let’s work on the data set.

# split dataset into train and test.

X_train, X_test, Y_train, Y_test = train_test_split(data 

["Description"], data["intent_label"], test_size=3)

print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

# vectorize the input using tfidf values.

tfidf = TfidfVectorizer()

tfidf = tfidf.fit(X_train)

X_train = tfidf.transform(X_train)

X_test = tfidf.transform(X_test)

# label encoding for different categories of intents

le = LabelEncoder().fit(Y_train)

Y_train = le.transform(Y_train)

Y_test = le.transform(Y_test)
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# other models like GBM, Random Forest may also be used

model = SVC()

model = model.fit(X_train, Y_train)

p = model.predict(X_test)

# calculate the f1_score. average="micro" since we want to 

calculate score for multiclass.

# Each instance(rather than class(search for macro average)) 

contribute equally towards the scoring.

print("f1_score:", f1_score( Y_test, p, average="micro"))

print("accuracy_score:",accuracy_score(Y_test, p))

Word2Vec

There are different methods of getting word vectors for a sentence, but the 

main theory behind all the techniques is to give similar words a similar 

vector representation. So, words like man and boy and girl will have similar 

vectors. The length of each vector can be set. Examples of Word2vec 

techniques include GloVe and CBOW (n-gram with or without skip grams).

You can use Word2vec by training it for your own data set (if you have 

enough data for the problem), or you can use pretrained data. Word2vec 

is available on the Internet. Pretrained models have been trained on huge 

documents such as Wikipedia data, tweets, and so on, and they’re almost 

always good for the problem.

An example of some techniques that you can use to train your intent 

classifier is to use a 1D-CNN on word vectors of the words in a sentence, 

appended in a list for each sentence.

# import required packages

from gensim.models import Word2Vec

import pandas as pd

import numpy as np

from keras.preprocessing.text import Tokenizer
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from keras.preprocessing.sequence import pad_sequences

from keras.utils.np_utils import to_categorical

from keras.layers import Dense, Input, Flatten

from keras.layers import Conv1D, MaxPooling1D, Embedding, Dropout

from keras.models import Model

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import f1_score, accuracy_score

# read data

data = pd.read_csv("intent1.csv")

# split data into test and train

X_train, X_test, Y_train, Y_test = train_test_split(data 

["Description"], data["intent_label"], test_size=6)

# label encoding for different categories of intents

le = LabelEncoder().fit(Y_train)

Y_train = le.transform(Y_train)

Y_test = le.transform(Y_test)

# get word_vectors for words in training set

X_train = [sent for sent in X_train]

X_test = [sent for sent in X_test]

# by default genism.Word2Vec uses CBOW, to train word vecs.  

We can also use skipgram with it

# by setting the "sg" attribute to number of skips we want.

# CBOW and Skip gram for the sentence "Hi Ron how was your 

day?" becomes:

# Continuos bag of words: 3-grams {"Hi Ron how", "Ron how was", 

"how was your" ...}

# Skip-gram 1-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi 

how was", "Ron how

# your", ...}
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# See how: "Hi Ron was" skips over "how".

# Skip-gram 2-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi 

Ron your", "Hi was

# your", ...}

# See how: "Hi Ron your" skips over "how was".

# Those are the general meaning of CBOW and skip gram.              

word_vecs = Word2Vec(X_train)

print("Word vectors trained")

# prune each sentence to maximum of 20 words.

max_sent_len = 20

# tokenize input strings

tokenizer = Tokenizer()

tokenizer.fit_on_texts(X_train)

sequences = tokenizer.texts_to_sequences(X_train)

sequences_test = tokenizer.texts_to_sequences(X_test)

word_index = tokenizer.word_index

vocab_size = len(word_index)

# sentences with less than 20 words, will be padded with zeroes 

to make it of length 20

# sentences with more than 20 words, will be pruned to 20.

x = pad_sequences(sequences, maxlen=max_sent_len)

X_test = pad_sequences(sequences_test, maxlen=max_sent_len)

# 100 is the size of wordvec.

embedding_matrix = np.zeros((vocab_size + 1, 100))

# make matrix of each word with its word_vectors for the CNN model.

# so each row of a matrix will represent one word. There will 

be a row for each word in
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# the training set

for word, i in word_index.items():

        try:

            embedding_vector = word_vecs[word]

        except:

            embedding_vector = None

            if embedding_vector is not None:

                embedding_matrix[i] = embedding_vector

print("Embeddings done")

vocab_size = len(embedding_matrix)

# CNN model requires multiclass labels to be converted into one 

hot ecoding.

# i.e. each column represents a label, and will be marked one 

for corresponding label.

y = to_categorical(np.asarray(Y_train))

embedding_layer = Embedding(vocab_size,

                                100,

                                weights=[embedding_matrix],

                                input_length=max_sent_len,

                                trainable=True)

sequence_input = Input(shape=(max_sent_len,), dtype='int32')

# stack each word of a sentence in a matrix. So each matrix 

represents a sentence.

# Each row in a matrix is a word(Word Vector) of a sentence.

embedded_sequences = embedding_layer(sequence_input)

# build the Convolutional model.

l_cov1 = Conv1D(128, 4, activation='relu')(embedded_sequences)

l_pool1 = MaxPooling1D(4)(l_cov1)

l_flat = Flatten()(l_pool1)
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hidden = Dense(100, activation='relu')(l_flat)

preds = Dense(len(y[0]), activation='softmax')(hidden)

model = Model(sequence_input, preds)

model.compile(loss='binary_crossentropy',optimizer='Adam')

print("model fitting - simplified convolutional neural 

network")

model.summary()

# train the model

model.fit(x, y, epochs=10, batch_size=128)

#get scores and predictions.

p = model.predict(X_test)

p = [np.argmax(i) for i in p]

score_cnn = f1_score(Y_test, p, average="micro")

print("accuracy_score:",accuracy_score(Y_test, p))

print("f1_score:", score_cnn)

The model fitting is a simplified convolutional neural network, as 

shown here:

Layer (Type) Output Shape Param #

input_20 (InputLayer) (None, 20) 0

embedding_20 (Embedding) (None, 20, 100) 2800

conv1d_19 (Conv1D) (None, 17, 128) 51328

max_pooling1d_19 (MaxPooling) (None, 4, 128) 0

flatten_19 (Flatten) (None, 512) 0

dense_35 (Dense) (None, 100) 51300

dense_36 (Dense) (None, 3) 303
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Here are the numbers of parameters:

•	 Total parameters: 105,731

•	 Trainable parameters: 105,731

•	 Nontrainable parameters: 0

Here are some important functions of Word2vec using the Gensim 

package:

•	 This is how you import Gensim and load the pretrained 

model:

import genism

#loading the pre-trained model

model = gensim.models.KeyedVectors.

load_word2vec_format('GoogleNews-vectors-

negative300.bin', binary=True)

•	 This is the pretrained model from Google for the 

English language, and it is of 300 dimensions.

•	 This is how to find the word vector of a word from a 

pretrained model:

# getting word vectors of a word

lion = model['lion']

print(len(lion))

•	 This is how to find the similarity index between two words:

#Calculating similarity index

print(model.similarity('King', 'Queen'))
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•	 This is how to find an odd one out from the set of words:

#Choose odd one out

print(model.doesnt_match("Mango Grape Tiger 

Banana Strawberry".split()))

•	 This is how to find the most similar words:

print(model.most_similar(positive=[Prince, 

Girl], negative=[Boy]))

A unique feature of Word2vec is that you can get 

vectors, from other vectors using vector operations. 

For example, a vector of “Prince” minus a vector of 

“boy” plus a vector of “girl” will be almost equal to a 

vector of “Princess.” Hence, when you compute this, 

you will get a vector of “Princess.”

Vec ("Prince") – Vec("boy") + Vec("girl") ≈ 
Vec("Princess")

This was just an example. This case is valid in many 

other cases. This is a specialty of Word2vec and is 

useful in estimating the similar words, next words, 

natural language generation (NLG), and so on.

Table 11-1 shows pretrained models with other parameters.

Chapter 11  Developing Chatbots



164

Ta
bl

e 
11

-1
. 

D
if

fe
re

n
t P

re
tr

ai
n

ed
 M

od
el

s 
w

it
h 

O
th

er
 P

ar
am

et
er

s

M
od

el
 F

ile
Nu

m
be

r o
f 

Di
m

en
si

on
s

Co
rp

us
 

Si
ze

Vo
ca

bu
la

ry
 

Si
ze

Ar
ch

ite
ct

ur
e

Co
nt

ex
t W

in
do

w
 

Si
ze

Au
th

or

Go
og

le
 N

ew
s

30
0

10
0B

3M
W

or
d2

Ve
c

Bo
W

, ~
5

Go
og

le

Fr
ee

ba
se

 ID
s

10
00

10
0B

1.
4M

W
or

d2
Ve

c,
 

Sk
ip

-g
ra

m

Bo
W

, ~
10

Go
og

le

Fr
ee

ba
se

 n
am

es
10

00
10

0B
1.

4M
W

or
d2

Ve
c,

 

Sk
ip

-g
ra

m

Bo
W

, ~
10

Go
og

le

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d 
5

50
6B

40
0,

00
0

Gl
oV

e
10

+
10

Gl
oV

e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d 
5

10
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d 
5

20
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d 
5

30
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

Co
m

m
on

 C
ra

w
l 4

2B
30

0
42

B
1.

9M
Gl

oV
e

Ad
aG

ra
d

Gl
oV

e

Co
m

m
on

 C
ra

w
l 8

40
B

30
0

84
0B

2.
2M

Gl
oV

e
Ad

aG
ra

d
Gl

oV
e

W
ik

ip
ed

ia
 d

ep
en

de
nc

y
30

0
-

17
4,

00
0

W
or

d2
Ve

c
Sy

nt
ac

tic
 

De
pe

nd
en

ci
es

Le
vy

 &
 

Go
ld

be
rg

DBP
e

di
a 

ve
ct

or
s 

(w
ik

i2
ve

c)
10

00
-

-
W

or
d2

Ve
c

Bo
W

, 1
0

Id
io

Chapter 11  Developing Chatbots



165

�Building the Response

Reponses are another important part of chatbots. Based on how a chatbot 

replies, a user may get attracted to it. Whenever a chatbot is made, one 

thing that should be kept in mind is its users. You need to know who will 

use it and for what purpose it will be used. For example, a chatbot for a 

restaurant web site will be asked only about restaurants and foods. So, you 

know more or less what questions will be asked. Therefore, for each intent, 

you store multiple answers that can be used after identifying the intent 

so the user will not get the same answer repeatedly. You can also have 

one intent for any out-of-context questions; that intent can have multiple 

answers, and choosing randomly, the chatbot can reply.

For example, if the intent is “hello,” you can have multiple replies such 

as “Hello! How are you?” and “Hello! How are you doing?” and “Hi! How 

can I help you?”

The chatbot can choose any one randomly for the reply.

In the following sample code, you are taking input from the user, but in 

the original chatbot, the intent is defined by the chatbot itself based on any 

question asked by the user.

import random

intent = input()

output = ["Hello! How are you","Hello! How are you doing","Hii! 

How can I help you","Hey! There","Hiiii","Hello! How can I 

assist you?","Hey! What's up?"]

if(intent == "Hii"):

 print(random.choice(output))

Chapter 11  Developing Chatbots



166

�Chatbot Development Using APIs
Creating a chatbot is not an easy task. You need an eye for detail and the 

sharp mindedness to build a chatbot that can be put to good use. There are 

two approaches to building a chatbot.

•	 Rule-based approach

•	 Machine learning approach that makes the system 

learn on its own by streamlining data

Some chatbots are basic in nature, while others are more advanced 

with AI brains. Chatbots that can understand natural language and 

respond to them use AI brains, and technology enthusiasts are making use 

of various sources such as Api.ai to create such AI-rich chatbots.

Programmers are leveraging the following services to build bots:

•	 Microsoft bot frameworks

•	 Wit.ai

•	 Api.ai

•	 IBM’s Watson

Other bot-building enthusiasts with limited or no programming skills 

are making use of bot development platforms such as the following to 

build chatbots:

•	 Chatfuel

•	 Texit.in

•	 Octane AI

•	 Motion.ai
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There are different APIs that analyze text. The three major giants are as 

follows:

•	 Cognitive Services of Microsoft Azure

•	 Amazon Lex

•	 IBM Watson

�Cognitive Services of Microsoft Azure

Let’s start with Microsoft Azure.

•	 Language Understanding Intelligent Service (LUIS): 

This provides simple tools that enable you to build your 

own language models (intents/entities) that allow any 

application/bot to understand your commands and act 

accordingly.

•	 Text Analytics API: This evaluates sentiment and topics 

in order to understand what users want.

•	 Translator Text API: This automatically identifies the 

language and then translates it into another language 

in real time.

•	 Web Language Model API: This inserts spaces into a 

string of words lacking spaces automatically.

•	 Bing Spell Check API: This enables users to correct 

spelling errors; recognize the difference among names, 

brand names, and slang; and understand homophones 

as they are typing.

•	 Linguistic Analysis API: This allows you to identify 

the concepts and actions in your text with part-of-

speech tagging and find phrases and concepts using 

natural language parsers. It is highly useful for mining 

customer feedback.
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�Amazon Lex

Amazon Lex is a service for building conversational interfaces into any 

application using voice and text. Unfortunately, there is no synonym 

option, and there is no proper entity extraction and intent classification.

The following are some important benefits of using Amazon Lex:

•	 It’s simple. It guides you in creating a chatbot.

•	 It has deep learning algorithms. Algorithms such 

as NLU and NLP are implemented for the chatbots. 

Amazon has centralized this functionality so that it can 

be easily used.

•	 It has easy deployment and scaling features.

•	 It has built-in integration with the AWS platform.

•	 It is cost effective.

�IBM Watson

IBM provides the IBM Watson API to quickly build your own chatbot. In 

the implementation, approaching the journey is just as important as the 

journey itself. Educating yourself on the Watson Conversational AI for the 

enterprise basics of conversational design, and its impact on your business, 

is essential in formulating a successful plan of action. This preparation will 

allow you to communicate, learn, and monitor against a standard, allowing 

your business to build a customer-ready and successful project.

Conversational design is the most important part of building a chatbot. 

The first thing to understand is who the user is and what they want to 

achieve.

IBM Watson has many technologies that you can easily integrate 

in your chatbot; some of them are Watson Conversation, Watson Tone 

Analyzer, speech to text, and many more.
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�Best Practices of Chatbot Development
While building a chatbot, it is important to understand that there are 

certain best practices that can be leveraged. This will help in creating a 

successful user-friendly bot that can fulfill its purpose to have a seamless 

conversation with the user.

One of the foremost things in this relation is to know the target audience 

well. Next comes other things such as identifying the use case scenarios, 

setting the tone of the chat, and identifying the messaging platforms.

By adhering to the following best practices, the desire to assure 

seamless conversations with users can become a reality.

�Know the Potential Users
A thorough understanding of the target audience is the first step in 

building a successful bot. The next stage is to know the purpose for which 

the bot is being created.

Here are some points to remember:

•	 Know what the purpose of the specific bot is. It could be a 

bot to entertain the audience, facilitate users to transact, 

provide news, or serve as a customer service channel.

•	 Make the bot more customer friendly by learning about 

the customer’s product.

�Read the User Sentiments and Make the Bot 
Emotionally Enriching
A chatbot should be warm and friendly just like a human in order to 

make the conversation a great experience. It has to smartly read as well as 

understand user sentiments to promote content blocks that can prompt 
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the user to continue the conversation. The user will be encouraged to visit 

again if the experience is a rich one the first time.

Here are some points to remember:

•	 Promote your product or turn users into brand 

ambassadors by leveraging positive sentiments.

•	 Promptly address negative comments to stay afloat in 

the conversation game.

•	 Whenever possible, use friendly language to make 

users feel like they are interacting with a familiar 

human.

•	 Make users feel comfortable by repeating inputs and 

ensure that they are able to understand everything 

being discussed.
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CHAPTER 12

Face Detection and 
Recognition
Face detection is the process of detecting a face in an image or video.

Face recognition is the process of detecting face in an image and then 

using algorithms to identify who the face belongs to. Face recognition is 

thus a form of person identification.

You first need to extract features from the image for training the 

machine learning classifier to identify faces in the image. Not only are 

these systems nonsubjective, but they are also automatic—no hand 

labeling of facial features is required. You simply extract features from the 

faces, train your classifier, and then use it to identify subsequent faces.

Since for face recognition you first need to detect a face from the 

image, you can think of face recognition as a two-phase stage.

•	 Stage 1: Detect the presence of faces in an image or 

video stream using methods such as Haar cascades, 

HOG + Linear SVM, deep learning, or any other 

algorithm that can localize faces.

•	 Stage 2: Take each of the faces detected during the 

localization phase and learn whom the face belongs 

to—this is where you actually assign a name to a face.
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�Face Detection, Face Recognition, and Face 
Analysis
There is a difference between face detection, face recognition, and face 

analysis.

•	 Face detection: This is the technique of finding all the 

human faces in an image.

•	 Face recognition: This is the next step after face 

detection. In face recognition, you identify which 

face belongs to which person using an existing image 

repository.

•	 Face analysis: A face is examined, and some inference 

is taken out such as age, complexion, and so on.

�OpenCV
OpenCV provides three methods for face recognition (see Figure 12-1):

•	 Eigenfaces

•	 Local binary pattern histograms (LBPHs)

•	 Fisherfaces
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All three methods recognize a face by comparing the face with some 

training set of known faces. For training, you supply the algorithm with 

faces and label them with the person they belong to. When you use the 

algorithm to recognize some unknown face, it uses the model trained on 

the training set to make the recognition. Each of the three aforementioned 

methods uses the training set a bit differently.

Laplacian faces can be another way to recognize face.

�Eigenfaces
The eigenfaces algorithm uses principal component analysis to construct 

a low-dimensional representation of face images, which you will use as 

features for the corresponding face images (Figure 12-2).

Figure 12-1.  Applying OpenCV methods to faces
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For this, you collect a data set of faces with multiple face images of 

each person you want to recognize—it’s like having multiple training 

examples of an image class you want to label in image classification. With 

this data set of face images, presumed to be the same width and height  

and ideally with their eyes and facial structures aligned at the same (x, y)  

coordinates, you apply an eigenvalue decomposition of the data set, 

keeping the eigenvectors with the largest corresponding eigenvalues.

Given these eigenvectors, a face can then be represented as a linear 

combination of what Kirby and Sirovich called eigenfaces. The eigenfaces 

algorithm looks at the whole data set.

Figure 12-2.  Applying Eigenvalue decomposition and extracting 11 
eigenfaces with the largest magnitude
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�LBPH
You can analyze each image independently in LBPH. The LBPH method 

is somewhat simpler, in the sense that you characterize each image in the 

data set locally; when a new unknown image is provided, you perform the 

same analysis on it and compare the result to each of the images in the 

data set. The way that you analyze the images is by characterizing the local 

patterns in each location in the image.

While the eigenfaces algorithm relies on PCA to construct a low-

dimensional representation of face images, the local binary pattern (LBP) 

method relies on, as the name suggests, feature extraction.

First introduced by Ahonen et al. in the 2006 paper “Face Recognition 

with Local Binary Patterns,” the method suggests dividing a face image into 

a 7×7 grid of equally sized cells (Figure 12-3).

Figure 12-3.  Applying LBPH for face recognition starts by dividing 
the face image into a 7x7 grid of equally sized cells
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You then extract a local binary pattern histogram from each of the 49 

cells. By dividing the image into cells, you introduce locality into the final 

feature vector. Furthermore, cells in the center have more weight such that 

they contribute more to the overall representation. Cells in the corners 

carry less identifying facial information compared to the cells in the center 

of the grid (which contain eyes, nose, and lip structures). Finally, you 

concatenate this weighted LBP histogram from the 49 cells to form your 

final feature vector.

�Fisherfaces
The Principal Component Analysis (PCA), which is the core of the 

Eigenfaces method, finds a linear combination of features that maximizes 

the total variance in data. While this is clearly a powerful way to represent 

data, it doesn’t consider any classes and so a lot of discriminative 

information may be lost when throwing components away. Imagine a 

situation where the variance in your data is generated by an external 

source, let it be the light. The components identified by a PCA do not 

necessarily contain any discriminative information at all, so the projected 

samples are smeared together and a classification becomes impossible.

The Linear Discriminant Analysis performs a class-specific 

dimensionality reduction and was invented by the great statistician  

Sir R. A. Fisher. The use of multiple measurements in taxonomic 

problems. In order to find the combination of features that separates 

best between classes the Linear Discriminant Analysis maximizes the 

ratio of between-classes to within-classes scatter, instead of maximizing 

the overall scatter. The idea is simple: same classes should cluster 

tightly together, while different classes are as far away as possible from 

each other in the lower-dimensional representation.
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�Detecting a Face
The first feature that you need for performing face recognition is to detect 

where in the current image a face is present. In Python you can use Haar 

cascade filters of the OpenCV library to do this efficiently.

For the implementation shown here, I used Anaconda with Python 3.5, 

OpenCV 3.1.0, and dlib 19.1.0. To use the following code, please make sure 

that you have these (or newer) versions.

To do the face detection, a couple of initializations must be done, as 

shown here:

 

The rest of the code will be an infinite loop that keeps getting the latest 

image from the webcam, detects all faces in the image retrieved, draws 

a rectangle around the largest face detected, and then finally shows the 

input, output images in a window (Figure 12-4).
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You can do this with the following code within an infinite loop:

 

Figure 12-4.  A sample output showing detected face
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�Tracking the Face
The previous code for face detection has some drawbacks.

•	 The code might be computationally expensive.

•	 If the detected person is turning their head slightly, the 

Haar cascade might not detect the face.

•	 It’s difficult to keep track of a face between frames.

A better approach for this is to do the detection of the face once and 

then make use of the correlation tracker from the excellent dlib library to 

just keep track of the faces from frame to frame.
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For this to work, you need to import another library and initialize 

additional variables.

 

Within the infinite for loop, you will now determine whether the dlib 

correlation tracker is currently tracking a region in the image. If this is 

not the case, you will use a similar code as before to find the largest face, 

but instead of drawing the rectangle, you use the found coordinates to 

initialize the correlation tracker.
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Now the final bit within the infinite loop is to check again if the 

correlation tracker is actively tracking a face (i.e., did it just detect a 

face with the previous code, trankingFace=1?). If the tracker is actively 

tracking a face in the image, you will update the tracker. Depending on the 

quality of the update (i.e., how confident the tracker is about whether it is 

still tracking the same face), you either draw a rectangle around the region 

indicated by the tracker or indicate you are not tracking a face anymore.
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As you can see in the code, you print a message to the console every 

time you use the detector again. If you look at the output of the console 

while running this application, you will notice that even if you move quite 

a bit around on the screen, the tracker is quite good at following a face 

once it is detected.

�Face Recognition
A face recognition system identifies the name of person present in the 

video frame by matching the face in each frame of video with the trained 

images and returns (and writes in a CSV file) the label if the face in the 

frame is successfully matched. You will now see how to create a face 

recognition system step-by-step.

First you import all the required libraries. face_recognition is the 

simple library built using dlib’s state-of-the-art face recognition also built 

with deep learning.

 

Argparse is a Python library that allows you to add your own 

arguments to a file; it can then be used to input any image directory or a 

file path at the time of execution.
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In the previous code, while running this Python file, you have to 

specify the following: the training input image directory, video file which 

we will use as data set, and an output CSV file to write the output at each 

time frame.

 

 

By using the previous function, all image files from the specified folder 

can be read.

The following function tests the input frame with the known training 

images:
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Now you define the function to extract the label for matched, known 

images.

 

Read the input video to extract test frames.

 

Now define the labels of your training sets. Then match the extracted 

frame from the given input video to get the desired results.

Chapter 12  Face Detection and Recognition



185

 

�Deep Learning–Based Face Recognition
Import the necessary packages.

 

Initialize the variables.
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The label_img() function is used to create the label array, and the 

detect_faces() function detects the face portion in the image.

 

The create_train_data() function is used for preprocessing the 

training data.
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The process_test_data() function is used to preprocess the testing data.

 

Then you create the model and fit the training data in the model.
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Finally, you prepare the test data and predict the output.

 

�Transfer Learning
Transfer learning makes use of the knowledge gained while solving one 

problem and applying it to a different but related problem.

Here you will see how you can use a pretrained deep neural network 

called the Inception v3 model for classifying images.

The Inception model is quite capable of extracting useful information 

from an image.

�Why Transfer Learning?
It’s well known that convolutional networks require significant amounts of 

data and resources to train.

It has become the norm for researchers and practitioners alike to use 

transfer learning and fine-tuning (that is, transferring the network weights 

trained on a previous project such as ImageNet to a new task).

Chapter 12  Face Detection and Recognition



189

You can take two approaches.

•	 Transfer learning: You can take a CNN that has 

been pretrained on ImageNet, remove the last fully 

connected layer, and then treat the rest of the CNN as a 

feature extractor for the new data set. Once you extract 

the features for all images, you train a classifier for the 

new data set.

•	 Fine-tuning: You can replace and retrain the classifier 

on top of the CNN and also fine-tune the weights of the 

pretrained network via backpropagation.

�Transfer Learning Example
In this example, first you will try to classify images by directly loading the 

Inception v3 model.

Import all the required libraries.

 

Now define the storage directory for the model and then download the 

Inception v3 model.
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Load the pretrained model and define the function to classify any 

given image.

 

Now that the model is defined, let’s check it for some images. 

 

This gives a 91.11 percent correct result, but now if you check for some 

person, this is what you get:
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It’s 48.50 percent tennis ball!

Unfortunately, the Inception model seemed unable to classify images 

of people. The reason for this was the data set used for training the 

Inception model, which had some confusing text labels for classes.

You can instead reuse the pretrained Inception model and merely replace 

the layer that does the final classification. This is called transfer learning.

First you input and process an image with the Inception model. Just 

prior to the final classification layer of the Inception model, you save the 

so-called transfer values to a cache file.

The reason for using a cache file is that it takes a long time to process 

an image with the Inception model. When all the images in the new data 

set have been processed through the Inception model and the resulting 

transfer values are saved to a cache file, then you can use those transfer 

values as the input to another neural network. You will then train the 

second neural network using the classes from the new data set, so the 

network learns how to classify images based on the transfer values from 

the Inception model.

In this way, the Inception model is used to extract useful information 

from the images, and another neural network is then used for the actual 

classification.

�Calculate the Transfer Value
Import the transfer_value_cache function from the Inception file.
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As of now, the transfer values are stored in the cache file. Now you will 

create a new neural network.

Define the networks.

 

Here is the optimization method:

 

Here is the classification accuracy:

 

Here is the TensorFlow run:
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Here is the helper function to perform batch training:

 

For optimizing, here is the code:
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For plotting the confusion matrix, here is the code:
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Here is the helper function for calculating the classifications:
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Now let’s run it.

from datetime import timedelta

optimize(num_iterations=1000)

Global Step:  13100, Training Batch Accuracy: 100.0%

Global Step:  13200, Training Batch Accuracy: 100.0%

Global Step:  13300, Training Batch Accuracy: 100.0%

Global Step:  13400, Training Batch Accuracy: 100.0%

Global Step:  13500, Training Batch Accuracy: 100.0%

Global Step:  13600, Training Batch Accuracy: 100.0%

Global Step:  13700, Training Batch Accuracy: 100.0%

Global Step:  13800, Training Batch Accuracy: 100.0%

Global Step:  13900, Training Batch Accuracy: 100.0%

Global Step:  14000, Training Batch Accuracy: 100.0%

Time usage: 0:00:36

print_test_accuracy(show_example_errors=True,

show_confusion_matrix=True)
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Accuracy on Test-Set: 83.2% (277 / 333)

Example errors:

Confusion Matrix:

[108 3 5] (0) Aamir Khan

[0 83 22] (1) Salman Khan

[4 22 86] (2) Shahrukh Khan

 (0) (1) (2)

�APIs
Many easy-to-use APIs are also available for the tasks of face detection and 

face recognition.

Here are some examples of face detection APIs:

•	 PixLab

•	 Trueface.ai

•	 Kairos

•	 Microsoft Computer Vision

Here are some examples of face recognition APIs:

•	 Face++

•	 LambdaLabs

•	 KeyLemon

•	 PixLab

If you want face detection, face recognition, and face analysis from one 

provider, currently there are three major giants that are leading here.

•	 Amazon’s Amazon Recognition API

•	 Microsoft Azure’s Face API

•	 IBM Watson’s Visual Recognition API
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Amazon’s Amazon Recognition API can do four types of recognition.

•	 Object and scene detection: Recognition identifies 

various interesting objects such as vehicles, pets, or 

furniture, and it provides a confidence score.

•	 Facial analysis: You can locate faces within images 

and analyze face attributes, such as whether the face is 

smiling or the eyes are open, with certain confidence 

scores.

•	 Face comparison: Amazon’s Amazon Recognition API 

lets you measure the likelihood that faces in two images 

are of the same person. Unfortunately, the similarity 

measure of two faces of the same person depends 

on the age at the time of the photos. Also, a localized 

increase in the illumination of a face alters the results 

of the face comparison.

•	 Facial recognition: The API identifies the person in a 

given image using a private repository. It is fast and 

accurate.

Microsoft Azure’s Face API will return a confidence score for how likely 

it is that the two faces belong to one person. Microsoft also has other APIs 

such as the following:

•	 Computer Vision API: This feature returns information 

about visual content found in an image. It can use 

tagging, descriptions, and domain-specific models to 

identify content and label it with confidence.

•	 Content Moderation API: This detects potentially 

offensive or unwanted images, text in various 

languages, and video content.
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•	 Emotion API: This analyzes faces to detect a range of 

feelings and personalize your app’s responses.

•	 Video API: This produces stable video output, detects 

motion, creates intelligent thumbnails, and detects and 

tracks faces.

•	 Video Indexer: This finds insights in video such as 

entities of speech, sentiment polarity of speech, and 

audio timeline.

•	 Custom Vision Service: This tags a new image based on 

the built-in models or the models built through training 

data sets provided by you.

IBM Watson’s Visual Recognition API can do some specific detection 

such as the following:

•	 It can determine the age of the person.

•	 It can determine the gender of the person.

•	 It can determine the location of the bounding box 

around a face.

•	 It can return information about a celebrity who is 

detected in the image. (This is not returned when a 

celebrity is not detected.)
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APPENDIX 1�

Keras Functions for  
Image Processing
Keras has a function called ImageDataGenerator that provides you with 

batches of tensor image data with real-time data augmentation. Data will 

be looped over in batches indefinitely.

Here is the function:

https://doi.org/10.1007/978-1-4842-3516-4
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Here are the function’s arguments:

•	 featurewise_center: Data type boolean. Sets input 

mean to 0 over the data set, feature-wise.

•	 samplewise_center: Data type boolean. Sets each 

sample mean to 0.

•	 featurewise_std_normalization: Data type boolean. 

Divides inputs by std of the data set, feature-wise.

•	 samplewise_std_normalization: Data type boolean. 

Divides each input by its std.

•	 zca_epsilon: Epsilon for ZCA whitening. The default  

is 1e-6.

•	 zca_whitening: boolean. Applies ZCA whitening.

•	 rotation_range: int. Sets degree of range for random 

rotations.

•	 width_shift_range: Data type float (fraction of total 

width). Sets range for random horizontal shifts.

•	 height_shift_range: Data type float (fraction of total 

height). Sets range for random vertical shifts.

•	 shear_range: Data type float. Sets shear intensity 

(shear angle in counterclockwise direction as radians).

•	 zoom_range: Data type float or [lower, upper]. Sets 

range for random zoom. If a float, [lower, upper] = 

[1-zoom_range, 1+zoom_range].

•	 channel_shift_range: Data type float. Sets range for 

random channel shifts.
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•	 fill_mode: One of {"constant", "nearest", 

"reflect" or "wrap"}. Points outside the boundaries 

of the input are filled according to the given mode.

•	 cval: Data type float or int. The value is used for 

points outside the boundaries when fill_mode = 

"constant".

•	 horizontal_flip: Data type boolean. Randomly flips 

inputs horizontally.

•	 vertical_flip: Data type boolean. Randomly flips 

inputs vertically.

•	 rescale: Rescaling factor. This defaults to None. If None 

or 0, no rescaling is applied. Otherwise, you multiply 

the data by the value provided (before applying any 

other transformation).

•	 preprocessing_function: Function that will be implied 

on each input. The function will run before any other 

modification on it. The function should take one 

argument, an image (a Numpy tensor with the rank 3), 

and should output a Numpy tensor with the same shape.

•	 data_format: One of {"channels_first", "channels_

last"}. "channels_last" mode means that the 

images should have shape (samples, height, width, 

channels). "channels_first" mode means that 

the images should have shape (samples, channels, 

height, width). It defaults to the image_data_ 

format value found in your Keras config file at  

~/.keras/keras.json. If you do not set it, then it will 

be "channels_last".
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Here are its methods:

•	 fit(x): Computes the internal data stats related to the 

data-dependent transformations, based on an array of 

sample data. This is required only if it’s featurewise_

center or featurewise_std_normalization or zca_

whitening.

•	 Here are the method’s arguments:

•	 x: Sample data. This should have a rank of 4. 

In the case of grayscale data, the channel’s axis 

should have a value of 1, and in the case of RGB 

data, it should have a value of 3.

•	 augment: Data type boolean (default: False). 

This sets whether to fit on randomly augmented 

samples.

•	 rounds: Data type int (default: 1). If augment is 

set, this sets how many augmentation passes 

over the data to use.

•	 seed: Data type int (default: None). Sets a 

random seed.

•	 flow(x, y): Takes Numpy data and label arrays and 

generates batches of augmented/normalized data. 

Yields batches indefinitely, in an infinite loop.

•	 Here are its arguments:

•	 x: Data. This should have the rank 4. In the case 

of grayscale data, the channel’s axis should 

have a value of 1, and in the case of RGB data, it 

should have a value of 3.

•	 y: Labels.
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•	 batch_size: Data type int (default: 32).

•	 shuffle: Data type boolean (default: True).

•	 seed: Data type int (default: None).

•	 save_to_dir: None or str (default: None). This 

allows you to optimally specify a directory to 

which to save the augmented pictures being 

generated (useful for visualizing what you are 

doing).

•	 save_prefix: Data type str (default: ''). 

This is the prefix to use for file names of saved 

pictures (relevant only if save_to_dir is set).

•	 save_format: Either png or jpeg (relevant only 

if save_to_dir is set). Default: png.

•	 yields: Tuples of (x, y) where x is a Numpy 

array of image data and y is a Numpy array 

of corresponding labels. The generator loops 

indefinitely.

The function will help you augment image data in real time, during the 

training itself, by creating batches of images. This will be passed during the 

training time.

The processing function can be used to write some manual functions 

also, which are not provided in the Keras library.
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�APPENDIX 2

Some of the Top Image  
Data Sets Available

•	 MNIST: Perhaps the most famous image data set 

available to you, this data set was compiled by 

Yann LeCun and team. This data set is used almost 

everywhere as a tutorial or introduction in computer 

vision. It has some 60,000 training images and about 

10,000 test images.

•	 CIFAR-10: This data set was made extremely famous by 

the ImageNet challenge. It has 60,000 32×32 images in 

10 classes, with 6,000 images per class. There are 50,000 

training images and 10,000 test images.

•	 ImageNet: This labeled object image database is 

used in the ImageNet Large Scale Visual Recognition 

Challenge. It includes labeled objects, bounding boxes, 

descriptive words, and SIFT features. There are a total 

of 14,197,122 instances.

•	 MS COCO: The Microsoft Common Objects in COntext 

(MS COCO) data set contains 91 common object 

categories, with 82 of them having more than 5,000 

labeled instances. In total, the data set has 2,500,000 

https://doi.org/10.1007/978-1-4842-3516-4
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labeled instances in 328,000 images. In contrast to the 

popular ImageNet data set, COCO has fewer categories 

but more instances per category. COCO is a large-scale 

object detection, segmentation, and captioning data set.

•	 10k US Adult Faces: This data set contains 10,168 

natural phace photographs and several measures 

for 2,222 of the faces, including memorability scores, 

computer vision and physical attributes, and landmark 

point annotations.

•	 Flickr 32/47 Brands Logos: This consists of real-world 

images collected from Flickr of company logos in 

various circumstances. It comes in two versions: the 

32-brand data set and the 47-brand data set. There are 

a total of 8,240 images.

•	 YouTube Faces: This is a database of face videos 

designed for studying the problem of unconstrained 

face recognition in videos. The data set contains 3,425 

videos of 1,595 different people.

•	 Caltech Pedestrian: The Caltech Pedestrian data set 

consists of approximately 10 hours of 640×480 30Hz 

video taken from a vehicle driving through regular 

traffic in an urban environment. About 250,000 frames 

(in 137 approximately minute-long segments) with 

a total of 350,000 bounding boxes and 2,300 unique 

pedestrians were annotated.

•	 PASCAL VOC: This is a huge data set for the image 

classification task. It has 500,000 instances of data.

Appendix 2  Some of the Top Image Data Sets Available 



209

•	 Microsoft Common Objects in Context (COCO): It 

contains complex everyday scenes of common objects 

in their natural context. Object highlighting, labeling, 

and classification into 91 object types. It contains 

2,500,000 instances.

•	 Caltech-256: This is a large data set of images for object 

classification. Images are categorized and hand-sorted. 

There are a total of 30,607 images.

•	 FBI crime data set: The FBI crime data set is amazing. 

If you are interested in time-series data analysis, you 

can use it to plot changes in crime rates at the national 

level over a 20-year period.

Appendix 2  Some of the Top Image Data Sets Available 
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�APPENDIX 3

Medical Imaging:  
DICOM File Format
Digital Imaging and Communication in Medicine (DICOM) is a type of 

file format used in the medical domain to store or transfer images taken 

during various tests of multiple patients.

�Why DICOM?
MRIs, CT scans, and X-rays can be stored in a normal file format, but 

because of the uniqueness of a medical report, many different types of data 

are required for a particular image.

�What Is the DICOM File Format?
This file format contains a header consisting of metadata of the image such 

as the patient’s name, ID, blood group, and so on. It also contains space-

separated pixel values of the images taken during various medical tests.

https://doi.org/10.1007/978-1-4842-3516-4
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The DICOM standard is a complex file format that can be handled by 

the following packages:

•	 pydicom: This is a package for working with images in 

Python. dicom was the older version of this package. As 

of this writing, pydicom 1.x is the latest version.

•	 oro.dicom: This is a package for working with  

images in R.

DICOM files are represented as FileName.dcm

.  
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