
Deep Learning
with Applications
Using Python

Chatbots and Face, Object, and Speech
Recognition With TensorFlow and Keras
—
Navin Kumar Manaswi

Deep Learning with
Applications Using

Python
Chatbots and Face, Object,

and Speech Recognition
With TensorFlow and Keras

Navin Kumar Manaswi

Deep Learning with Applications Using Python

ISBN-13 (pbk): 978-1-4842-3515-7		 ISBN-13 (electronic): 978-1-4842-3516-4
https://doi.org/10.1007/978-1-4842-3516-4

Library of Congress Control Number: 2018938097

Copyright © 2018 by Navin Kumar Manaswi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484235157. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Navin Kumar Manaswi
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-3516-4

iii

Foreword��ix

About the Author��xi

About the Technical Reviewer��xiii

Table of Contents

Chapter 1: �Basics of TensorFlow���1

Tensors���2

Computational Graph and Session���3

Constants, Placeholders, and Variables���6

Placeholders��9

Creating Tensors��12

Fixed Tensors��13

Sequence Tensors��14

Random Tensors���15

Working on Matrices��16

Activation Functions���17

Tangent Hyperbolic and Sigmoid��18

ReLU and ELU���19

ReLU6���20

Loss Functions���22

Loss Function Examples���23

Common Loss Functions��23

iv

Optimizers��25

Loss Function Examples���26

Common Optimizers���27

Metrics���28

Metrics Examples���28

Common Metrics��29

Chapter 2: �Understanding and Working with Keras����������������������������31

Major Steps to Deep Learning Models���32

Load Data���33

Preprocess the Data���33

Define the Model��34

Compile the Model��36

Fit the Model���37

Evaluate Model���38

Prediction���38

Save and Reload the Model��39

Optional: Summarize the Model���39

Additional Steps to Improve Keras Models��40

Keras with TensorFlow���42

Chapter 3: �Multilayer Perceptron��45

Artificial Neural Network��45

Single-Layer Perceptron��47

Multilayer Perceptron���47

Logistic Regression Model���49

Table of ContentsTable of Contents

v

Chapter 4: �Regression to MLP in TensorFlow��������������������������������������57

TensorFlow Steps to Build Models���57

Linear Regression in TensorFlow���58

Logistic Regression Model���62

Multilayer Perceptron in TensorFlow���65

Chapter 5: �Regression to MLP in Keras���69

Log-Linear Model���69

Keras Neural Network for Linear Regression���71

Logistic Regression��73

scikit-learn for Logistic Regression��74

Keras Neural Network for Logistic Regression���74

Fashion MNIST Data: Logistic Regression in Keras��77

MLPs on the Iris Data���80

Write the Code��80

Build a Sequential Keras Model��81

MLPs on MNIST Data (Digit Classification)���84

MLPs on Randomly Generated Data���88

Chapter 6: �Convolutional Neural Networks��91

Different Layers in a CNN���91

CNN Architectures��95

Chapter 7: �CNN in TensorFlow���97

Why TensorFlow for CNN Models?���97

TensorFlow Code for Building an Image Classifier for MNIST Data���������������������98

Using a High-Level API for Building CNN Models���104

Table of ContentsTable of Contents

vi

Chapter 8: �CNN in Keras��105

Building an Image Classifier for MNIST Data in Keras���������������������������������������105

Define the Network Structure���107

Define the Model Architecture��108

Building an Image Classifier with CIFAR-10 Data��110

Define the Network Structure���111

Define the Model Architecture���112

Pretrained Models��113

Chapter 9: �RNN and LSTM��115

The Concept of RNNs���115

The Concept of LSTM���118

Modes of LSTM��118

Sequence Prediction��119

Sequence Numeric Prediction��120

Sequence Classification���120

Sequence Generation���121

Sequence-to-Sequence Prediction���121

Time-Series Forecasting with the LSTM Model���122

Chapter 10: �Speech to Text and Vice Versa���������������������������������������127

Speech-to-Text Conversion��128

Speech as Data��128

Speech Features: Mapping Speech to a Matrix���129

Spectrograms: Mapping Speech to an Image��131

Building a Classifier for Speech Recognition Through MFCC Features��������������132

Building a Classifier for Speech Recognition Through a Spectrogram��������������133

Open Source Approaches���135

Table of ContentsTable of Contents

vii

Examples Using Each API���135

Using PocketSphinx��135

Using the Google Speech API��136

Using the Google Cloud Speech API��137

Using the Wit.ai API��137

Using the Houndify API���138

Using the IBM Speech to Text API���138

Using the Bing Voice Recognition API���139

Text-to-Speech Conversion��140

Using pyttsx��140

Using SAPI��140

Using SpeechLib���140

Audio Cutting Code���141

Cognitive Service Providers���142

Microsoft Azure��143

Amazon Cognitive Services��143

IBM Watson Services��144

The Future of Speech Analytics���144

Chapter 11: �Developing Chatbots��145

Why Chatbots?���146

Designs and Functions of Chatbots���146

Steps for Building a Chatbot��147

Preprocessing Text and Messages���148

Chatbot Development Using APIs���166

Best Practices of Chatbot Development���169

Know the Potential Users���169

Read the User Sentiments and Make the Bot Emotionally Enriching�����������169

Table of ContentsTable of Contents

viii

Chapter 12: �Face Detection and Recognition�������������������������������������171

Face Detection, Face Recognition, and Face Analysis���������������������������������������172

OpenCV��172

Eigenfaces��173

LBPH���175

Fisherfaces���176

Detecting a Face��177

Tracking the Face���179

Face Recognition���182

Deep Learning–Based Face Recognition���185

Transfer Learning���188

Why Transfer Learning?��188

Transfer Learning Example���189

Calculate the Transfer Value���191

APIs��197

�Appendix 1: Keras Functions for Image Processing��������������������������201

�Appendix 2: Some of the Top Image Data Sets Available������������������207

�Appendix 3: Medical Imaging: DICOM File Format����������������������������211

�Why DICOM?��211

�What Is the DICOM File Format?��211

�Index��213

Table of ContentsTable of Contents

ix

Foreword

Deep Learning has come a really long way. From the birth of the idea to

understand human mind and the concept of associationism — how we

perceive things and how relationships of objects and views influence our

thinking and doing, to the modelling of associationism which started in

the 1870s when Alexander Bain introduced the first concert of Artificial

Neural Networks by grouping the neurons.

Fast forward it to today 2018 and we see how Deep Learning has

dramatically improved and is in all forms of life — from object detection,

speech recognition, machine translation, autonomous vehicles, face

detection and the use of face detection from mundane tasks such as

unlocking your iPhoneX to doing more profound tasks such as crime

detection and prevention.

Convolutional Neural Networks and Recurrent Neural Networks

are shining brightly as they continue to help solve the world problems

in literally all industry areas such as Automotive & Transportation,

Healthcare & Medicine, Retail to name a few. Great progress is being made

in these areas and just metrics like these say enough about the palpability

of the deep learning industry:

–– Number of Computer Science academic papers have soared to almost

10x since 1996

–– VCs are investing 6x more in AI startups since 2000

–– There are 14x more active AI startups since 2000

–– AI related jobs market is hiring 5x more since 2013 and Deep Learning is

the most sought after skill in 2018

x

–– 84% of enterprises believe investing in AI will give them a great competi-

tive edge

And finally,

–– the error rate of image classification has dropped from 28% in 2012 to

2.5% in 2017 and it is going down all the time!

Still the research community is not satisfied. We are pushing

boundaries and I am moving ahead with my peers to develop models

around the bright and shiny Capsule Networks and give Deep Learning

a huge edge. I am not the only one in this battle. It is with great pleasure I

put this foreword for Navin, a respected professional in the Deep Learning

community I have come to know so well.

His book is coming just at the right moment. The industry as well as

learners are in need of practical means to strengthen their knowledge in

Deep Learning and apply in their job.

I am convinced that Navin’s book will give the learners what they need.

TensorFlow is increasingly becoming the market leader and Keras too is

being adopted by professionals to solve difficult problems in computer

vision and NLP (Natural Language Processing). There is no single

company on this planet who isn’t investing in these two application areas.

I look forward to this book being published and will be the first in line

to get it. And my advice to you is: you should too!

ForewordForeword

xi

About the Author

Navin Kumar Manaswi has been developing

AI solutions with the use of cutting-edge

technologies and sciences related to artificial

intelligence for many years. Having worked for

consulting companies in Malaysia, Singapore,

and the Dubai Smart City project, as well

as his own company, he has developed a

rare mix of skills for delivering end-to-end

artificial intelligence solutions, including

video intelligence, document intelligence, and

human-like chatbots. Currently, he solves B2B problems in the verticals of

healthcare, enterprise applications, industrial IoT, and retail at Symphony

AI Incubator as a deep learning AI architect. With this book, he wants to

democratize the cognitive computing and services for everyone, especially

developers, data scientists, software engineers, database engineers, data

analysts, and C-level managers.  

xiii

About the Technical Reviewer

Sundar Rajan Raman has more than 14 years

of full stack IT experience in machine

learning, deep learning, and natural language

processing. He has six years of big data

development and architect experience,

including working with Hadoop and

its ecosystems as well as other NoSQL

technologies such as MongoDB and

Cassandra. In fact, he has been the technical

reviewer of several books on these topics. 
He is also interested in strategizing using Design Thinking principles

and coaching and mentoring people.

1© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_1

CHAPTER 1

Basics of TensorFlow
This chapter covers the basics of TensorFlow, the deep learning

framework. Deep learning does a wonderful job in pattern recognition,

especially in the context of images, sound, speech, language, and time-

series data. With the help of deep learning, you can classify, predict,

cluster, and extract features. Fortunately, in November 2015, Google

released TensorFlow, which has been used in most of Google’s products

such as Google Search, spam detection, speech recognition, Google

Assistant, Google Now, and Google Photos. Explaining the basic

components of TensorFlow is the aim of this chapter.

TensorFlow has a unique ability to perform partial subgraph

computation so as to allow distributed training with the help of

partitioning the neural networks. In other words, TensorFlow allows model

parallelism and data parallelism. TensorFlow provides multiple APIs.

The lowest level API—TensorFlow Core—provides you with complete

programming control.

Note the following important points regarding TensorFlow:

•	 Its graph is a description of computations.

•	 Its graph has nodes that are operations.

•	 It executes computations in a given context of a session.

•	 A graph must be launched in a session for any

computation.

2

•	 A session places the graph operations onto devices

such as the CPU and GPU.

•	 A session provides methods to execute the graph

operations.

For installation, please go to https://www.tensorflow.org/install/.

I will discuss the following topics:

�Tensors
Before you jump into the TensorFlow library, let’s get comfortable with

the basic unit of data in TensorFlow. A tensor is a mathematical object

and a generalization of scalars, vectors, and matrices. A tensor can be

represented as a multidimensional array. A tensor of zero rank (order) is

nothing but a scalar. A vector/array is a tensor of rank 1, whereas a

Chapter 1 Basics of TensorFlow

https://www.tensorflow.org/install/

3

matrix is a tensor of rank 2. In short, a tensor can be considered to be an

n-dimensional array.

Here are some examples of tensors:

•	 5: This is a rank 0 tensor; this is a scalar with shape [].

•	 [2.,5., 3.]: This is a rank 1 tensor; this is a vector

with shape [3].

•	 [[1., 2., 7.], [3., 5., 4.]]: This is a rank 2

tensor; it is a matrix with shape [2, 3].

•	 [[[1., 2., 3.]], [[7., 8., 9.]]]: This is a rank 3

tensor with shape [2, 1, 3].

�Computational Graph and Session
TensorFlow is popular for its TensorFlow Core programs where it has two

main actions.

•	 Building the computational graph in the construction

phase

•	 Running the computational graph in the execution

phase

Let’s understand how TensorFlow works.

•	 Its programs are usually structured into a construction

phase and an execution phase.

•	 The construction phase assembles a graph that has

nodes (ops/operations) and edges (tensors).

•	 The execution phase uses a session to execute ops

(operations) in the graph.

Chapter 1 Basics of TensorFlow

4

•	 The simplest operation is a constant that takes no

inputs but passes outputs to other operations that do

computation.

•	 An example of an operation is multiplication

(or addition or subtraction that takes two matrices as

input and passes a matrix as output).

•	 The TensorFlow library has a default graph to which

ops constructors add nodes.

So, the structure of TensorFlow programs has two phases, shown here:

A computational graph is a series of TensorFlow operations arranged

into a graph of nodes.

Let’s look at TensorFlow versus Numpy. In Numpy, if you plan to

multiply two matrices, you create the matrices and multiply them. But in

TensorFlow, you set up a graph (a default graph unless you create another

graph). Next, you need to create variables, placeholders, and constant

values and then create the session and initialize variables. Finally, you feed

that data to placeholders so as to invoke any action.

Chapter 1 Basics of TensorFlow

5

To actually evaluate the nodes, you must run the computational graph

within a session.

A session encapsulates the control and state of the TensorFlow runtime.

The following code creates a Session object:

sess = tf.Session()

It then invokes its run method to run enough of the computational

graph to evaluate node1 and node2.

The computation graph defines the computation. It neither computes

anything nor holds any value. It is meant to define the operations

mentioned in the code. A default graph is created. So, you don’t need to

create it unless you want to create graphs for multiple purposes.

A session allows you to execute graphs or parts of graphs. It allocates

resources (on one or more CPUs or GPUs) for the execution. It holds the

actual values of intermediate results and variables.

The value of a variable, created in TensorFlow, is valid only within

one session. If you try to query the value afterward in a second session,

TensorFlow will raise an error because the variable is not initialized there.

To run any operation, you need to create a session for that graph. The

session will also allocate memory to store the current value of the variable

Chapter 1 Basics of TensorFlow

6

Here is the code to demonstrate:

�Constants, Placeholders, and Variables
TensorFlow programs use a tensor data structure to represent all data—

only tensors are passed between operations in the computation graph. You

can think of a TensorFlow tensor as an n-dimensional array or list. A tensor

has a static type, a rank, and a shape. Here the graph produces a constant

result. Variables maintain state across executions of the graph.

Chapter 1 Basics of TensorFlow

7

Generally, you have to deal with many images in deep learning, so you

have to place pixel values for each image and keep iterating over all images.

To train the model, you need to be able to modify the graph to tune

some objects such as weight and bias. In short, variables enable you to

add trainable parameters to a graph. They are constructed with a type and

initial value.

Let’s create a constant in TensorFlow and print it.

Here is the explanation of the previous code in simple terms:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a constant value (x) and assign it the

numerical value 12.

	 3.	 Create a session for computing the values.

	 4.	 Run just the variable x and print out its current

value.

The first two steps belong to the construction phase, and the last two

steps belong to the execution phase. I will discuss the construction and

execution phases of TensorFlow now.

You can rewrite the previous code in another way, as shown here:

Chapter 1 Basics of TensorFlow

8

Now you will explore how you create a variable and initialize it. Here is

the code that does it:

Here is the explanation of the previous code:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a constant value called x and give it the

numerical value 12.

	 3.	 Create a variable called y and define it as being the

equation 12+11.

	 4.	 Initialize the variables with tf.global_variables_

initializer().

	 5.	 Create a session for computing the values.

	 6.	 Run the model created in step 4.

	 7.	 Run just the variable y and print out its current

value.

Here is some more code for your perusal:

Chapter 1 Basics of TensorFlow

9

�Placeholders
A placeholder is a variable that you can feed something to at a later time. It

is meant to accept external inputs. Placeholders can have one or multiple

dimensions, meant for storing n-dimensional arrays.

Here is the explanation of the previous code:

	 1.	 Import the tensorflow module and call it tf.

	 2.	 Create a placeholder called x, mentioning the

float type.

	 3.	 Create a tensor called y that is the operation of

multiplying x by 10 and adding 500 to it. Note that

any initial values for x are not defined.

	 4.	 Create a session for computing the values.

	 5.	 Define the values of x in feed_dict so as to run y.

	 6.	 Print out its value.

In the following example, you create a 2×4 matrix (a 2D array) for

storing some numbers in it. You then use the same operation as before to

do element-wise multiplying by 10 and adding 1 to it. The first dimension

of the placeholder is None, which means any number of rows is allowed.

Chapter 1 Basics of TensorFlow

10

You can also consider a 2D array in place of the 1D array. Here is the

code:

This is a 2×4 matrix. So, if you replace None with 2, you can see the

same output.

But if you create a placeholder of [3, 4] shape (note that you will feed

a 2×4 matrix at a later time), there is an error, as shown here:

Chapter 1 Basics of TensorFlow

11

################# What happens in a linear model ##########

Weight and Bias as Variables as they are to be tuned

W = tf.Variable([2], dtype=tf.float32)

b = tf.Variable([3], dtype=tf.float32)

Training dataset that will be fed while training as Placeholders

x = tf.placeholder(tf.float32)

Linear Model

y = W * x + b

Constants are initialized when you call tf.constant, and their values

can never change. By contrast, variables are not initialized when you call

tf.Variable. To initialize all the variables in a TensorFlow program, you

must explicitly call a special operation as follows.

It is important to realize init is a handle to the TensorFlow subgraph

that initializes all the global variables. Until you call sess.run, the

variables are uninitialized.

Chapter 1 Basics of TensorFlow

12

�Creating Tensors
An image is a tensor of the third order where the dimensions belong to

height, width, and number of channels (Red, Blue, and Green).

Here you can see how an image is converted into a tensor:

Chapter 1 Basics of TensorFlow

13

You can generate tensors of various types such as fixed tensors,

random tensors, and sequential tensors.

�Fixed Tensors
Here is a fixed tensor:

Chapter 1 Basics of TensorFlow

14

tf:.fill creates a tensor of shape (2×3) having a unique number.

tf.diag creates a diagonal matrix having specified diagonal elements.

tf.constant creates a constant tensor.

�Sequence Tensors
tf.range creates a sequence of numbers starting from the specified value

and having a specified increment.

tf.linspace creates a sequence of evenly spaced values.

Chapter 1 Basics of TensorFlow

15

�Random Tensors
tf.random_uniform generates random values from uniform distribution

within a range.

tf.random_normal generates random values from the normal

distribution having the specified mean and standard deviation.

Chapter 1 Basics of TensorFlow

16

Can you guess the result?

If you are not able to find the result, please revise the previous portion

where I discuss the creation of tensors.

Here you can see the result:

�Working on Matrices
Once you are comfortable creating tensors, you can enjoy working on

matrices (2D tensors).

Chapter 1 Basics of TensorFlow

17

�Activation Functions
The idea of an activation function comes from the analysis of how a

neuron works in the human brain (see Figure 1-1). The neuron becomes

active beyond a certain threshold, better known as the activation potential.

It also attempts to put the output into a small range in most cases.

Sigmoid, hyperbolic tangent (tanh), ReLU, and ELU are most popular

activation functions.

Let’s look at the popular activation functions.

Chapter 1 Basics of TensorFlow

18

Figure 1-1.  An activation function

�Tangent Hyperbolic and Sigmoid
Figure 1-2 shows the tangent hyperbolic and sigmoid activation functions.

Figure 1-2.  Two popular activation functions

Chapter 1 Basics of TensorFlow

19

Here is the demo code:

�ReLU and ELU
Figure 1-3 shows the ReLU and ELU functions.

Figure 1-3.  The ReLU and ELU functions

Chapter 1 Basics of TensorFlow

20

Here is the code to produce these functions:

�ReLU6
ReLU6 is similar to ReLU except that the output cannot be more than six ever.

Note that tanh is a rescaled logistic sigmoid function.

Chapter 1 Basics of TensorFlow

21

Chapter 1 Basics of TensorFlow

22

�Loss Functions
The loss function (cost function) is to be minimized so as to get the best

values for each parameter of the model. For example, you need to get the

best value of the weight (slope) and bias (y-intercept) so as to explain the

target (y) in terms of the predictor (X). The method is to achieve the best

value of the slope, and y-intercept is to minimize the cost function/loss

function/sum of squares. For any model, there are numerous parameters,

and the model structure in prediction or classification is expressed in

terms of the values of the parameters.

You need to evaluate your model, and for that you need to define the

cost function (loss function). The minimization of the loss function can

be the driving force for finding the optimum value of each parameter. For

Chapter 1 Basics of TensorFlow

23

regression/numeric prediction, L1 or L2 can be the useful loss function.

For classification, cross entropy can be the useful loss function. Softmax or

sigmoid cross entropy can be quite popular loss functions.

�Loss Function Examples
Here is the code to demonstrate:

�Common Loss Functions
The following is a list of the most common loss functions:

tf.contrib.losses.absolute_difference

tf.contrib.losses.add_loss

Chapter 1 Basics of TensorFlow

24

tf.contrib.losses.hinge_loss

tf.contrib.losses.compute_weighted_loss

tf.contrib.losses.cosine_distance

tf.contrib.losses.get_losses

tf.contrib.losses.get_regularization_losses

tf.contrib.losses.get_total_loss

tf.contrib.losses.log_loss

tf.contrib.losses.mean_pairwise_squared_error

tf.contrib.losses.mean_squared_error

tf.contrib.losses.sigmoid_cross_entropy

tf.contrib.losses.softmax_cross_entropy

tf.contrib.losses.sparse_softmax_cross_entropy

tf.contrib.losses.log(predictions,labels,weight=2.0)

Chapter 1 Basics of TensorFlow

25

�Optimizers
Now you should be convinced that you need to use a loss function to

get the best value of each parameter of the model. How can you get the

best value?

Initially you assume the initial values of weight and bias for the model

(linear regression, etc.). Now you need to find the way to reach to the

best value of the parameters. The optimizer is the way to reach the best

value of the parameters. In each iteration, the value changes in a direction

suggested by the optimizer. Suppose you have 16 weight values (w1, w2,

w3, …, w16) and 4 biases (b1, b2, b3, b4). Initially you can assume every

weight and bias to be zero (or one or any number). The optimizer suggests

whether w1 (and other parameters) should increase or decrease in the

next iteration while keeping the goal of minimization in mind. After many

iterations, w1 (and other parameters) would stabilize to the best value

(or values) of parameters.

In other words, TensorFlow, and every other deep learning framework,

provides optimizers that slowly change each parameter in order to

minimize the loss function. The purpose of the optimizers is to give

direction to the weight and bias for the change in the next iteration.

Assume that you have 64 weights and 16 biases; you try to change the

weight and bias values in each iteration (during backpropagation) so that

you get the correct values of weights and biases after many iterations while

trying to minimize the loss function.

Selecting the best optimizer for the model to converge fast and to learn

weights and biases properly is a tricky task.

Adaptive techniques (adadelta, adagrad, etc.) are good optimizers

for converging faster for complex neural networks. Adam is supposedly

the best optimizer for most cases. It also outperforms other adaptive

techniques (adadelta, adagrad, etc.), but it is computationally costly. For

sparse data sets, methods such as SGD, NAG, and momentum are not the

best options; the adaptive learning rate methods are. An additional benefit

Chapter 1 Basics of TensorFlow

26

is that you won’t need to adjust the learning rate but can likely achieve the

best results with the default value.

�Loss Function Examples
Here is the code to demonstrate:

Chapter 1 Basics of TensorFlow

27

�Common Optimizers
The following is a list of common optimizers:

Chapter 1 Basics of TensorFlow

28

�Metrics
Having learned some ways to build a model, it is time to evaluate the

model. So, you need to evaluate the regressor or classifier.

There are many evaluation metrics, among which classification

accuracy, logarithmic loss, and area under ROC curve are the most popular

ones.

Classification accuracy is the ratio of the number of correct predictions

to the number of all predictions. When observations for each class are not

much skewed, accuracy can be considered as a good metric.

tf.contrib.metrics.accuracy(actual_labels, predictions)

There are other evaluation metrics as well.

�Metrics Examples
This section shows the code to demonstrate.

Here you create actual values (calling them x) and predicted values

(calling them y). Then you check the accuracy. Accuracy represents the

ratio of the number of times the actual equals the predicted values and

total number of instances.

Chapter 1 Basics of TensorFlow

29

�Common Metrics
The following is a list of common metrics:

Chapter 1 Basics of TensorFlow

30

Chapter 1 Basics of TensorFlow

31© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_2

CHAPTER 2

Understanding and
Working with Keras
Keras is a compact and easy-to-learn high-level Python library for deep

learning that can run on top of TensorFlow (or Theano or CNTK). It

allows developers to focus on the main concepts of deep learning, such

as creating layers for neural networks, while taking care of the nitty-gritty

details of tensors, their shapes, and their mathematical details. TensorFlow

(or Theano or CNTK) has to be the back end for Keras. You can use Keras

for deep learning applications without interacting with the relatively

complex TensorFlow (or Theano or CNTK). There are two major kinds

of framework: the sequential API and the functional API. The sequential

API is based on the idea of a sequence of layers; this is the most common

usage of Keras and the easiest part of Keras. The sequential model can be

considered as a linear stack of layers.

In short, you create a sequential model where you can easily add

layers, and each layer can have convolution, max pooling, activation, drop-

out, and batch normalization. Let’s go through major steps to develop

deep learning models in Keras.

32

�Major Steps to Deep Learning Models
The four core parts of deep learning models in Keras are as follows:

	 1.	 Define the model. Here you create a sequential

model and add layers. Each layer can contain one

or more convolution, pooling, batch normalization,

and activation function.

	 2.	 Compile the model. Here you apply the loss

function and optimizer before calling the compile()

function on the model.

	 3.	 Fit the model with training data. Here you train the

model on the test data by calling the fit() function

on the model.

	 4.	 Make predictions. Here you use the model to

generate predictions on new data by calling

functions such as evaluate() and predict().

There are eight steps to the deep learning process in Keras:

	 1.	 Load the data.

	 2.	 Preprocess the data.

	 3.	 Define the model.

	 4.	 Compile the model.

	 5.	 Fit the model.

	 6.	 Evaluate the model.

	 7.	 Make the predictions.

	 8.	 Save the model.

Chapter 2 Understanding and Working with Keras

33

�Load Data
Here is how you load data:

�Preprocess the Data
Here is how you preprocess data:

Chapter 2 Understanding and Working with Keras

34

�Define the Model
Sequential models in Keras are defined as a sequence of layers. You

create a sequential model and then add layers. You need to ensure the

input layer has the right number of inputs. Assume that you have 3,072

input variables; then you need to create the first hidden layer with 512

nodes/neurons. In the second hidden layer, you have 120 nodes/neurons.

Finally, you have ten nodes in the output layer. For example, an image

maps onto ten nodes that shows the probability of being label1 (airplane),

label2 (automobile), label3 (cat), …, label10 (truck). The node of highest

probability is the predicted class/label.

One image has three channels (RGB), and in each channel, the

image has 32×32 = 1024 pixels. So, each image has 3×1024 = 3072 pixels

(features/X/inputs).

With the help of 3,072 features, you need to predict the probability of

label1 (Digit 0), label2 (Digit 1), and so on. This means the model predicts

ten outputs (Digits 0–9) where each output represents the probability of

the corresponding label. The last activation function (sigmoid, as shown

earlier) gives 0 for nine outputs and 1 for only one output. That label is the

predicted class for the image (Figure 2-1).

For example, 3,072 features ➤ 512 nodes ➤ 120 nodes ➤ 10 nodes.

Chapter 2 Understanding and Working with Keras

35

The next question is, how do you know the number of layers to use and

their types? No one has the exact answer. What’s best for evaluation metrics is

that you decide the optimum number of layers and the parameters and steps

in each layer. A heuristics approach is also used. The best network structure

is found through a process of trial-and-error experimentation. Generally, you

need a network large enough to capture the structure of the problem.

Figure 2-1.  Defining the model

Chapter 2 Understanding and Working with Keras

36

In this example, you will use a fully connected network structure with

three layers. A dense class defines fully connected layers.

In this case, you initialize the network weights to a small random

number generated from a uniform distribution (uniform) in this

case between 0 and 0.05 because that is the default uniform weight

initialization in Keras. Another traditional alternative would be normal for

small random numbers generated from a Gaussian distribution. You use or

snap to a hard classification of either class with a default threshold of 0.5.

You can piece it all together by adding each layer.

�Compile the Model
Having defined the model in terms of layers, you need to declare the loss

function, the optimizer, and the evaluation metrics. When the model is

proposed, the initial weight and bias values are assumed to be 0 or 1, a

random normally distributed number, or any other convenient numbers.

But the initial values are not the best values for the model. This means the

initial values of weight and bias are not able to explain the target/label in

terms of predictors (Xs). So, you want to get the optimal value for the model.

The journey from initial values to optimal values needs a motivation, which

will minimize the cost function/loss function. The journey needs a path

(change in each iteration), which is suggested by the optimizer. The journey

also needs an evaluation measurement, or evaluation metrics.

Popular loss functions are binary cross entropy, categorical cross

entropy, mean_squared_logarithmic_error and hinge loss. Popular

optimizers are stochastic gradient descent (SGD), RMSProp, adam,

adagrad, and adadelta. Popular evaluation metrics are accuracy, recall,

and F1 score.

Chapter 2 Understanding and Working with Keras

37

In short, this step is aimed at tuning the weights and biases based on

loss functions through iterations based on the optimizer evaluated by

metrics such as accuracy.

�Fit the Model
Having defined and compiled the model, you need to make predications

by executing the model on some data. Here you need to specify the

epochs; these are the number of iterations for the training process to run

through the data set and the batch size, which is the number of instances

that are evaluated before a weight update. For this problem, the program

will run for a small number of epochs (10), and in each epoch, it will

complete 50(=50,000/1,000) iterations where the batch size is 1,000 and the

training data set has 50,000 instances/images. Again, there is no hard rule

to select the batch size. But it should not be very small, and it should be

much less than the size of the training data set to consume less memory.

Chapter 2 Understanding and Working with Keras

38

�Evaluate Model
Having trained the neural networks on the training data sets, you need

to evaluate the performance of the network. Note that this will only give

you an idea of how well you have modeled the data set (e.g., the train

accuracy), but you won’t know how well the algorithm might perform

on new data. This is for simplicity, but ideally, you could separate your

data into train and test data sets for the training and evaluation of your

model. You can evaluate your model on your training data set using the

evaluation() function on your model and pass it the same input and

output used to train the model. This will generate a prediction for each

input and output pair and collect scores, including the average loss and

any metrics you have configured, such as accuracy.

�Prediction
Once you have built and evaluated the model, you need to predict for

unknown data.

Chapter 2 Understanding and Working with Keras

39

�Save and Reload the Model
Here is the final step:

�Optional: Summarize the Model
Now let’s see how to summarize the model.

Chapter 2 Understanding and Working with Keras

40

�Additional Steps to Improve Keras Models
Here are some more steps to improve your models:

	 1.	 Sometimes, the model building process does not

complete because of a vanishing or exploding

gradient. If this is the case, you should do the

following:

	 2.	 Model the output shape.

�#Shape of the n-dim array (output of the model

at the current position)

 model.output_shape

	 3.	 Model the summary representation.

model.summary()

	 4.	 Model the configuration.

model.get_config()

	 5.	 List all the weight tensors in the model.

model.get_weights()

Here I am sharing the complete code for the Keras model. Can you

attempt to explain it?

Chapter 2 Understanding and Working with Keras

41

Chapter 2 Understanding and Working with Keras

42

�Keras with TensorFlow
Keras provides high-level neural networks by leveraging a powerful and

lucid deep learning library on top of TensorFlow/Theano. Keras is a great

addition to TensorFlow as its layers and models are compatible with pure-

TensorFlow tensors. Moreover, it can be used alongside other TensorFlow

libraries.

Here are the steps involved in using Keras for TensorFlow:

	 1.	 Start by creating a TensorFlow session and

registering it with Keras. This means Keras will

use the session you registered to initialize all the

variables that it creates internally.

import TensorFlow as tf

sess = tf.Session()

from keras import backend as K

K.set_session(sess)

	 2.	 Keras modules such as the model, layers, and

activation are used to build models. The Keras

engine automatically converts these modules into

the TensorFlow-equivalent script.

	 3.	 Other than TensorFlow, Theano and CNTK can be

used as back ends to Keras.

	 4.	 A TensorFlow back end has the convention of

making the input shape (to the first layer of your

network) in depth, height, width order, where depth

can mean the number of channels.

Chapter 2 Understanding and Working with Keras

43

	 5.	 You need to configure the keras.json file correctly

so that it uses the TensorFlow back end. It should

look something like this:

{

 "backend": "theano",

 "epsilon": 1e-07,

 "image_data_format": "channels_first",

 "floatx": "float32"

}

In next chapters, you will learn how to leverage Keras for working on

CNN, RNN, LSTM, and other deep learning activities.

Chapter 2 Understanding and Working with Keras

45© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_3

CHAPTER 3

Multilayer Perceptron
Before you start learning about multilayered perceptron, you need to get a

big-picture view of artificial neural networks. That’s what I’ll start with in

this chapter.

�Artificial Neural Network
An artificial neural network (ANN) is a computational network (a system

of nodes and the interconnection between nodes) inspired by biological

neural networks, which are the complex networks of neurons in human

brains (see Figure 3-1). The nodes created in the ANN are supposedly

programmed to behave like actual neurons, and hence they are artificial

neurons. Figure 3-1 shows the network of the nodes (artificial neurons)

that make up the artificial neural network.

46

The number of layers and the number of neurons/nodes per layer can

be the main structural component of an artificial neural network. Initially,

the weights (representing the interconnection) and bias are not good

enough to make the decision (classification, etc.). It is like the brain of a

baby who has no prior experience. A baby learns from experiences so as to

be a good decision-maker (classifier). Experiences/data (labeled) helps the

neural network of brains tune the (neural) weights and bias. The artificial

neural network goes through the same process. The weights are tuned per

iteration to create a good classifier. Since tuning and thereby getting the

correct weights by hand for thousands of neurons is very time-consuming,

you use algorithms to perform these duties.

That process of tuning the weights is called learning or training. This is

the same as what humans do on a daily basis. We try to enable computers

to perform like humans.

Let’s start exploring the simplest ANN model.

A typical neural network contains a large number of artificial neurons

called units arranged in a series of different layers: input layer, hidden

layer, and output layer (Figure 3-2).

Figure 3-1.  Artificial neural network

Chapter 3 Multilayer Perceptron

47

Neural networks are connected, which means each neuron in the

hidden layer is fully connected to every neuron in the previous input

layer and to its next output layer. A neural network learns by adjusting the

weights and biases in each layer iteratively to get the optimal results.

�Single-Layer Perceptron
A single-layer perceptron is a simple linear binary classifier. It takes inputs

and associated weights and combines them to produce output that is used

for classification. It has no hidden layers. Logistic regression is the single-

layer perceptron.

�Multilayer Perceptron
A multilayer perceptron (MLP) is a simple example of feedback artificial

neural networks. An MLP consists of at least one hidden layer of nodes

other than the input layer and the output layer. Each node of a layer other

Figure 3-2.  Neural network

Chapter 3 Multilayer Perceptron

48

than the input layer is called a neuron that uses a nonlinear activation

function such as sigmoid or ReLU. An MLP uses a supervised learning

technique called backpropagation for training, while minimizing the loss

function such as cross entropy. It uses an optimizer for tuning parameters

(weight and bias). Its multiple layers and nonlinear activation distinguish

an MLP from a linear perceptron.

A multilayer perceptron is a basic form of a deep neural network.

Before you learn about MLPs, let’s look at linear models and logistic

models. You can appreciate the subtle difference between linear, logistic,

and MLP models in terms of complexity.

Figure 3-3 shows a linear model with one input (X) and one output (Y).

Figure 3-3.  Single-input vector

The single-input model has a vector X with weight W and bias b. The

output, Y, is WX + b, which is the linear model.

Figure 3-4 shows multiple inputs (X1 and X2) and one output (Y).

Figure 3-4.  Linear model

Chapter 3 Multilayer Perceptron

49

This linear model has two input features: X1 and X2 with the

corresponding weights to each input feature being W1, W2, and bias b. The

output, Y, is W1X1 + W2X2 + b.

�Logistic Regression Model
Figure 3-5 shows the learning algorithm that you use when the output label

Y is either 0 or 1 for a binary classification problem. Given an input feature

vector X, you want the probability that Y = 1 given the input feature X. This

is also called as a shallow neural network or a single-layer (no hidden layer;

only and output layer) neural network. The output layer, Y, is σ (Z), where Z

is WX + b and σ is a sigmoid function.

Figure 3-5.  One input (X) and one output (Y)

Figure 3-6 shows the learning algorithm that you use when the output

label Y is either 0 or 1 for a binary classification problem.

Figure 3-6.  Multiple inputs (X1 and X1) and one output (Y)

Chapter 3 Multilayer Perceptron

50

Given input feature vectors X1 and X2, you want the probability that

Y = 1 given the input features. This is also called a perceptron. The output

layer, Y, is σ (Z), where Z is WX + b.

X

X

W W

W W

X

X

b

b

W X W X1

2

1 2

3 4

1

2

1

2

1 1 2é

ë
ê

ù

û
ú®

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú®

* + *
s

22 1

3 1 4 2 2

+
* + * +

é

ë
ê

ù

û
ú

æ

è
ç

ö

ø
÷

b

W X W X b

Figure 3-7 shows a two-layer neural network, with a hidden layer and

an output layer. Consider that you have two input feature vectors X1 and X2

connecting to two neurons, X1’ and X2’. The parameters (weights) associated

from the input layer to the hidden layer are w1, w2, w3, w4, b1, b2.

Figure 3-7.  Two-layer neural network

Chapter 3 Multilayer Perceptron

51

X1’ and X2’ compute the linear combination (Figure 3-8).

X

X

w w

w w

X

X

b

b

1

2

1 2

3 4

1

2

1

2

’

’

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

(2×1)(2×2)(2×1)(2×1) is the dimension of the input and hidden layers.

Figure 3-8.  Computation in the neural network

The linear input X1’ and X2’ passes through the activation unit a1 and

a2 in the hidden layer.

a1 is σ (X1’) and a2 is σ(X2’), so you can also write the equation as follows:

a

a

X

X

1

2

1

2

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ús
’

’

Chapter 3 Multilayer Perceptron

52

The value forward propagates from the hidden layer to the output

layer. Inputs a1 and a2 and parameters w5, w6, and b3 pass through the

output layer a’ (Figure 3-9).

Figure 3-9.  Forward propagation

a’=[]é
ë
ê

ù

û
ú +[]w w

a

a
b5 6

1

2
3 creates a linear combination of (w5*a1 +

w6*a2) + b3, which will pass through a nonlinear sigmoid function to the

final output layer, Y.

y = ()s a’

Let’s say the initial model structure in one dimension is Y = w*X + b,

where the parameters w and b are weights and bias.

Chapter 3 Multilayer Perceptron

53

Consider the loss function L(w, b) = 0.9 for the initial value of the

parameters w = 1 and b = 1. You get this output: y = 1*X+1 & L(w ,b) = 0.9.

The objective is to minimize the loss by adjusting the parameters w

and b. The errors will be backpropagated from the output layer to the

hidden layer to the input layer to adjust the parameter through a learning

rate and optimizer. Finally, we want to build a model (regressor) that can

explain Y in terms of X.

To start the process of build a model, we initialize weight and bias. For

convenience, w = 1, b = 1 (Initial value), (optimizer) stochastic gradient

descent with learning rate (α = 0.01).

Here is step 1: Y = 1 * X + 1.

1.20 0.35

The parameters are adjusted to w = 1.20 and b = 0.35.

Here is step 2: Y1 = 1.20*X + 0.35.

1.24 0.31

The parameters are adjusted to w = 1.24 and b = 0.31.

Here is step 3: Y1 = 1.24*X + 0.31.

1.25 0.30

Chapter 3 Multilayer Perceptron

54

After some iterations, the weight and bias become stable. As you see,

the initial changes are high while tuning. After some iterations, the change

is not significant.

L(w, b) gets minimized for w = 1.26 and b = 0.29; hence, the final model

becomes the following:

Y = 1.26 * X + 0.29

Similarly, in two dimensions, you can consider the parameters, weight

matrix and bias vector.

Let’s assume that initial weight matrix and bias vector as W =
é

ë
ê

ù

û
ú

1 1

1 1

and B =
é

ë
ê
ù

û
ú
1

1
.

You iterate and backpropagate the error to adjust w and b.

Y W= =
é

ë
ê

ù

û
ú *[]+ é

ë
ê
ù

û
ú

1 1

1 1

1

1
X is the initial model. Weight matrix (2x2)

and bias matrix(2x1) are tuned in each iteration. So, we can see change in

weight and bias matrices

Here is step 1:

W B= , =
0 7 0 8

0 6 1 2

2 4

3 2

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Chapter 3 Multilayer Perceptron

55

Here is step 2:

0 7 0 8

0 6 1 2

2 4

3 2

. .

. .

.

.

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

W B= , =
0 6 0 7

0 4 1 3

2 8

3 8

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Here is step 3:

0 6 0 7

0 4 1 3

2 8

3 8

. .

. .

.

.

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

You can notice change in weight matrix(2x2) and bias matrix(2x1) in
the iteration.

W B= , =
0 5 0 6

0 3 1 3

2 9

4 0

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Chapter 3 Multilayer Perceptron

56

The final model after w and b are adjusted is as follows:

Y =
é

ë
ê

ù

û
ú *[]+ é

ë
ê

ù

û
ú

0 4 0 5

0 2 1 3

3 0

4 0

. .

. .

.

.
X

In this chapter, you learned how weight and bias are tuned in each

iteration while keeping the aim of minimization of loss functions. That is

done with the help of optimizers such as stochastic gradient descent.

In this chapter, we have understood ANN and MLP as the basic deep

learning model. Here, we can see MLP as the natural progression from

linear and logistic regression. We have seen how weight and bias are

tuned in every iteration which happens in backpropagation. Without

going into details of backpropagation, we have seen the action/result of

backpropagation. In next two chapters, we can learn how to build MLP

models in TensorFlow and in keras.

Chapter 3 Multilayer Perceptron

57© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_4

CHAPTER 4

Regression to MLP
in TensorFlow
People have been using regression and classifiers for a long time. Now it is time

to switch to the topic of neural networks. A multilayered perceptron (MLP)

is a simple neural network model where you can add one or more hidden

layers between the input and output layers.

In this chapter, you will see how TensorFlow can help you build the

models. You will start with the most basic model, which is a linear model.

Logistic and MLP models are also discussed in this chapter.

�TensorFlow Steps to Build Models
In this section, I’ll discuss the steps to build models in TensorFlow. I will

walk you through the steps here, and then you’ll see the code throughout

this chapter:

	 1.	 Load the data.

	 2.	 Split the data into the train and test.

	 3.	 Normalize if needed.

	 4.	 Initialize placeholders that will contain predictors

and the target.

58

	 5.	 Create variables (weight and bias) that will be tuned up.

	 6.	 Declare model operations.

	 7.	 Declare the loss function and optimizer.

	 8.	 Initialize the variables and session.

	 9.	 Fit the model by using training loops.

	 10.	 Check and display the result with test data.

�Linear Regression in TensorFlow
First you need to understand the code for linear regression in TensorFlow.

Figure 4-1 shows a basic linear model.

As shown in Figure 4-1, the weight (W) and bias (b) are to be tuned so

as to get the right values of weight and bias. So, the weight (W) and bias (b)

are the variables in the TensorFlow code; you will tune/modify them in

each iteration until you get the stable (correct) values.

Figure 4-1.  Basic linear model

You need to create placeholders for X. Placeholders have a particular

shape and contain a particular type.

When you have more than one feature, you will have a similar working

model to Figure 4-2.

Chapter 4 Regression to MLP in TensorFlow

59

In the following code, you will use the Iris data set from Seaborn, which

has five attributes. You will consider the sepal length as your input and the

petal length as the output value. The main aim of this regression model is to

predict the petal length when you are given the sepal length value. X is the

sepal length, and Y is the petal length.

A linear regression using TensorFlow on Iris data

Figure 4-2.  Linear model with multiple inputs

Chapter 4 Regression to MLP in TensorFlow

60

Chapter 4 Regression to MLP in TensorFlow

61

If you run the code, you will see the output shown in Figure 4-3.

Figure 4-3.  Weights, bias, and loss at each step

Chapter 4 Regression to MLP in TensorFlow

62

Figure 4-4 shows the plot for the predicted value of petal length.

Figure 4-4.  Petal length versus sepal length

�Logistic Regression Model
For classification, the simplest approach is logistic regression. In

this section, you’ll learn how you can perform logistic regression in

TensorFlow. Here you create the weight and bias as variables so that there

is a scope of tuning/changing them per iteration. Placeholders are created

to contain X. You need to create placeholders for X. Placeholders have a

particular shape and contain a particular type, as shown in Figure 4-5.

Figure 4-5.  Chart of logistic regression model

Chapter 4 Regression to MLP in TensorFlow

63

In the following code, you will use the Iris data set, which has five

attributes. The fifth one is the target class. You will consider the sepal

length and sepal width as the predictor attributes and the flower’s species

as the target value. The main aim of this logistic regression model is to

predict the kind of species when you are given the sepal length and sepal

width values.

Create a Python file and import all the required libraries.

Chapter 4 Regression to MLP in TensorFlow

64

If you run the previous code, the plot of cross entropy loss against each

epoch looks like Figure 4-6.

Chapter 4 Regression to MLP in TensorFlow

65

�Multilayer Perceptron in TensorFlow
A multilayer perceptron (MLP) is a simple example of feedback artificial

neural networks. An MLP consists of at least one hidden layer of nodes

other than input layer and output layer. Each node of a layer other than

the input layer is called a neuron that uses a nonlinear activation function

such as sigmoid or ReLU. MLP uses a supervised learning technique called

backpropagation for training while minimizing the loss function such as

cross entropy and using an optimizer for tuning parameters (weight and

bias). Its multiple layers and non-linear activation distinguish MLP from a

linear perceptron.

TensorFlow is well suited for building MLP models. In an MLP, you

need to tune the weight and bias per iteration. This means the weight and

bias keep changing until they become stable while minimizing the loss

function. So, you can create the weight and bias as variables in TensorFlow.

I tend to give them initial values (all 0s or all 1s or some random normally

distributed values). Placeholders should have a particular type of value

and a defined shape, as shown in Figure 4-7.

Figure 4-6.  Plot for cross entropy loss per epoch

Chapter 4 Regression to MLP in TensorFlow

66

Import all the required libraries. Implementing MLP in TensorFlow.

Figure 4-7.  Flowchart for MLP

Chapter 4 Regression to MLP in TensorFlow

67

Chapter 4 Regression to MLP in TensorFlow

68

If you will run this code, you’ll get the plot shown in Figure 4-8.

In this chapter, I discussed how you can build linear, logistic, and MLP

models in TensorFlow in a systemic way.

Figure 4-8.  Plot for loss while training and testing

Chapter 4 Regression to MLP in TensorFlow

69© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_5

CHAPTER 5

Regression to MLP
in Keras
You have been working on regression while solving machine learning

applications. Linear regression and nonlinear regression are used to

predict numeric targets, while logistic regression and other classifiers are

used to predict non-numeric target variables. In this chapter, I will discuss

the evolution of multilayer perceptrons.

Specifically, you will compare the accuracy generated by different

models with and without using Keras.

�Log-Linear Model
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

70

You will be using the Iris data set as the source of data. So, load the

data set from Seaborn.

The Iris data set has five attributes. You will be using the first four

attributes to predict the species, whose class is defined in the fifth attribute

of the data set.

Using scikit-learn’s function, split the testing and training data sets.

##################################

scikit Learn for (Log) Linear Regression

##################################

Use the model.fit function to train the model with the training

data set.

As the model is trained, you can predict the output of the test set.

Chapter 5 Regression to MLP in Keras

71

�Keras Neural Network for Linear Regression
Now, let’s build a Keras neural network model for linear regression.

Use the model.fit function to train the model with the training

data set.

As the model is trained, you can predict the output of the test set.

Print the accuracy obtained by both models.

Chapter 5 Regression to MLP in Keras

72

If you run the code, you will see the following output:

Chapter 5 Regression to MLP in Keras

73

�Logistic Regression
In this section, I will share an example for the logistic regression so you can

compare the code in scikit-learn with that in Keras (see Figure 5-1).

Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

You will be using the Iris data set as the source of data. So, load the

data set from scikit-learn.

Using scikit-learn’s function, split the testing and training data sets.

Figure 5-1.  Logistic regression used for classification

Chapter 5 Regression to MLP in Keras

74

�scikit-learn for Logistic Regression
Use the model.fit function to train the model with the training data set.

After the model is trained, you can predict the output of the test set.

##

�Keras Neural Network for Logistic Regression
One-hot encoding transforms features to a format that works better with

the classification and regression algorithms.

Chapter 5 Regression to MLP in Keras

75

Use the model.fit function to train the model with the training data set.

Use the model.evaluate function to evaluate the performance of the

model.

Print the accuracy obtained by both models.

Accuracy for scikit-learn based model

The accuracy is 0.83.

Accuracy for keras model

The accuracy is 0.99.

Chapter 5 Regression to MLP in Keras

76

If you run the code, you will see the following output:

To give the real-life example, I will discuss some code that uses the

Fashion MNIST data set, which is a data set of Zalando.com’s images

consisting of a training set of 60,000 examples and a test set of 10,000

examples. Each example is a 28×28 grayscale image associated with a label

from ten classes.

Chapter 5 Regression to MLP in Keras

77

�Fashion MNIST Data: Logistic Regression
in Keras
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

As mentioned, you will be using the Fashion MNIST data set. Store the

data and the label in two different variables.

Normalize the data set, as shown here:

Chapter 5 Regression to MLP in Keras

78

Define the model, as shown here:

Save the model in an .h5 file (so that you can use it later directly with

the load_model() function from keras.models) and print the accuracy of

the model in the test set, as shown here:

Chapter 5 Regression to MLP in Keras

79

If you run the previous code, you will see the following output:

('train-images-idx3-ubyte.gz', <http.client.HTTPMessage object

at 0x00000171338E2B38>)

Layer (type) Output Shape Param #

===

dense_59 (Dense) (None, 256) 200960

dropout_10 (Dropout) (None, 256) 0

dense_60 (Dense) (None, 512) 131584

dense_61 (Dense) (None, 10) 5130

===

Total params: 337,674

Trainable params: 337,674

Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples

Epoch 1/2

60000/60000 [==============================] - loss: 0.5188 -

acc: 0.8127 - val_loss: 0.4133 - val_acc: 0.8454

Epoch 2/2

60000/60000 [==============================] - loss: 0.3976 -

acc: 0.8545 - val_loss: 0.4010 - val_acc: 0.8513

Test loss: 0.400989927697

Test accuracy: 0.8513

Chapter 5 Regression to MLP in Keras

80

�MLPs on the Iris Data
A multilayer perceptron is a minimal neural network model. In this

section, I’ll show you the code.

�Write the Code
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Load the data set by reading a CSV file using Pandas.

Assign numeric values to the classes of the data set.

Convert the data frame to an array.

Chapter 5 Regression to MLP in Keras

81

Split the data and the target and store them in two different variables.

Change the target format using Numpy.

�Build a Sequential Keras Model
Here you will build a multilayer perceptron model with one hidden layer.

•	 Input layer: The input layer contains four neurons,

representing the features of an iris (sepal length, etc.).

•	 Hidden layer: The hidden layer contains ten neurons,

and the activation uses ReLU.

•	 Output layer: The output layer contains three neurons,

representing the classes of the Iris softmax layer.

Chapter 5 Regression to MLP in Keras

82

Compile the model and choose an optimizer and loss function for

training and optimizing your data, as shown here:

Train the model using the model.fit function, as shown here:

Load and prepare the test data, as shown here:

Convert the string value to a numeric value, as shown here:

Convert the data frame to an array, as shown here:

Split x and y, in other words, the feature set and target set, as shown here:

Chapter 5 Regression to MLP in Keras

83

Make a prediction on the trained model, as shown here:

Calculate the accuracy, as shown here:

Print the accuracy generated by the model, as shown here:

If you run the code, you will see the following output:

Epoch 1/100

120/120 [==============================] - 0s - loss: 2.7240 -

acc: 0.3667

Epoch 2/100

120/120 [==============================] - 0s - loss: 2.4166 -

acc: 0.3667

Epoch 3/100

120/120 [==============================] - 0s - loss: 2.1622 -

acc: 0.4083

Epoch 4/100

120/120 [==============================] - 0s - loss: 1.9456 -

acc: 0.6583

Chapter 5 Regression to MLP in Keras

84

Epoch 98/100

120/120 [==============================] - 0s - loss: 0.5571 -

acc: 0.9250

Epoch 99/100

120/120 [==============================] - 0s - loss: 0.5554 -

acc: 0.9250

Epoch 100/100

120/120 [==============================] - 0s - loss: 0.5537 -

acc: 0.9250

�MLPs on MNIST Data (Digit Classification)
MNIST is the standard data set to predict handwritten digits. In this

section, you will see how you can apply the concept of multilayer

perceptrons and make a handwritten digit recognition system.

Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Sone important variables are defined.

Chapter 5 Regression to MLP in Keras

85

Load the data set using the mnist.load_data() function.

The types of the training set and the test set are converted to float32.

The data sets are normalized; in other words, they are set to a Z-score.

Display the number of the training samples present in the data set and

also the number of test sets available.

Convert class vectors to binary class matrices.

Chapter 5 Regression to MLP in Keras

86

Define the sequential model of the multilayer perceptron.

Use an optimizer.

The function to optimize is the cross entropy between the true label

and the output (softmax) of the model.

Use the model.fit function to train the model.

Using the model, evaluate the function to evaluate the performance of

the model.

Print the accuracy generated in the model.

Chapter 5 Regression to MLP in Keras

87

If you run the code, you will get the following output:

60000 train samples

10000 test samples

Train on 60000 samples, validate on 10000 samples

Epoch 1/20

13s - loss: 0.2849 - acc: 0.9132 - val_loss: 0.1149 - val_acc:

0.9652

Epoch 2/20

11s - loss: 0.1299 - acc: 0.9611 - val_loss: 0.0880 - val_acc:

0.9741

Epoch 3/20

11s - loss: 0.0998 - acc: 0.9712 - val_loss: 0.1121 - val_acc:

0.9671

Epoch 4/20

Epoch 18/20

14s - loss: 0.0538 - acc: 0.9886 - val_loss: 0.1241 - val_acc:

0.9814

Epoch 19/20

12s - loss: 0.0522 - acc: 0.9888 - val_loss: 0.1154 - val_acc:

0.9829

Epoch 20/20

13s - loss: 0.0521 - acc: 0.9891 - val_loss: 0.1183 - val_acc:

0.9824

Test score: 0.118255248802

Test accuracy: 0.9824

Now, it is time to create a data set and use a multilayer perceptron.

Here you will create your own data set using the random function and run

the multilayer perceptron model on the generated data.

Chapter 5 Regression to MLP in Keras

88

�MLPs on Randomly Generated Data
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Generate the data using the random function.

Create a sequential model.

Compile the model.

Use the model.fit function to train the model.

Chapter 5 Regression to MLP in Keras

89

Evaluate the performance of the model using the model.evaluate

function.

If you run the code, you will get the following output:

Epoch 1/20

1000/1000 [==============================] - 0s - loss:

2.4432 - acc: 0.0970

Epoch 2/20

1000/1000 [==============================] - 0s - loss:

2.3927 - acc: 0.0850

Epoch 3/20

1000/1000 [==============================] - 0s - loss:

2.3361 - acc: 0.1190

Epoch 4/20

1000/1000 [==============================] - 0s - loss:

2.3354 - acc: 0.1000

Epoch 19/20

1000/1000 [==============================] - 0s - loss:

2.3034 - acc: 0.1160

Epoch 20/20

1000/1000 [==============================] - 0s - loss:

2.3055 - acc: 0.0980

100/100 [==============================] - 0s

In this chapter, I discussed how to build linear, logistic, and MLP

models in Keras in a systemic way.

Chapter 5 Regression to MLP in Keras

91© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_6

CHAPTER 6

Convolutional Neural
Networks
A convolutional neural network (CNN) is a deep, feed-forward artificial

neural network in which the neural network preserves the hierarchical

structure by learning internal feature representations and generalizing the

features in the common image problems like object recognition and other

computer vision problems. It is not restricted to images; it also achieves

state-of-the-art results in natural language processing problems and

speech recognition.

�Different Layers in a CNN
A CNN consists of multiple layers, as shown in Figure 6-1.

Figure 6-1.  Layers in a convolution neural network

92

The convolution layers consist of filters and image maps. Consider the

grayscale input image to have a size of 5×5, which is a matrix of 25 pixel

values. The image data is expressed as a three-dimensional matrix of

width × height × channels.

Note  An image map is a list of coordinates relating to a specific
image.

Convolution aims to extract features from the input image, and

hence it preserves the spatial relationship between pixels by learning

image features using small squares of input data. Rotational invariance,

translation invariance, and scale invariance can be expected. For example,

a rotated cat image or rescaled cat image can be easily identified by a

CNN because of the convolution step. You slide the filter (square matrix)

over your original image (here, 1 pixel), and at each given position, you

compute element-wise multiplication (between the matrices of the filter

and the original image) and add the multiplication outputs to get the final

integer that forms the elements of the output matrix.

Subsampling is simply the average pooling with learnable weights per

feature map, as shown in Figure 6-2.

Chapter 6 Convolutional Neural Networks

93

As shown in Figure 6-2, filters have input weights and generate an

output neuron. Let’s say you define a convolutional layer with six filters

and receptive fields that are 2 pixels wide and 2 pixels high and use a

default stride width of 1, and the default padding is set to 0. Each filter

receives input from 2×2 pixels, section of image. In other words, that’s 4

pixels at a time. Hence, you can say it will require 4 + 1 (bias) input weights.

The input volume is 5×5×3 (width × height × number of channel), there

are six filters of size 2×2 with stride 1 and pad 0. Hence, the number of

parameters in this layer for each filter has 2*2*3 + 1 = 13 parameters (added

+1 for bias). Since there are six filters, you get 13*6 = 78 parameters.

Figure 6-2.  Subsampling

Chapter 6 Convolutional Neural Networks

94

Here’s a summary:

•	 The input volume is of size W1 × H1 × D1.

•	 The model requires hyperparameters: number of

filters (f), stride (S), amount of zero padding (P).

•	 This produces a volume of size W2 × H2 × D2.

•	 W2 = (W1-f+ 2P) /S + 1 = 4.

•	 H2 = (H1-f+2P)/S +1 = 4.

•	 D2 = Number of filters = f = 6.

The pooling layers reduce the previous layers’ activation maps. It is

followed by one or more convolutional layers and consolidates all the

features that were learned in the previous layers’ activation maps. This

reduces the overfitting of the training data and generalizes the features

represented by the network. The receptive field size is almost always set to

2×2 and use a stride of 1 or 2 (or higher) to ensure there is no overlap. You

will use a max operation for each receptive field so that the activation is the

maximum input value. Here, every four numbers map to just one number.

So, the number of pixels goes down to one-fourth of the original in this

step (Figure 6-4).

Figure 6-3.  Input volume

Chapter 6 Convolutional Neural Networks

95

A fully connected layer is a feed-forward artificial neural network

layer. These layers have a nonlinear activation function to output class

prediction probabilities. They are used toward the end after all the features

are identified and extracted by convolutional layers and have been

consolidated by the pooling layers in the network. Here, the hidden and

output layers are the fully connected layers.

�CNN Architectures
A CNN is a feed-forward deep neural network architecture comprised of

a few convolutional layers, each followed by a pooling layer, activation

function, and optionally batch normalization. It also comprises of the

fully connected layers. As an image moves through the network, it gets

smaller, mostly because of max pooling. The final layer outputs the class

probabilities prediction.

Figure 6-4.  Maxpooling-reducing the number of pixels

Chapter 6 Convolutional Neural Networks

96

The past few years have seen many architectures being developed

that have made tremendous progress in the field of image classification.

Award-winning pretrained networks (VGG16, VGG19, ResNet50, Inception

V3, and Xception) have been used for various image classification

challenges including medical imaging. Transfer learning is the kind of

practice where you use pretrained models in addition to a couple of layers.

It can be used to solve image classification challenges in every field.

Figure 6-5.  CNN Architecture for Classification

Chapter 6 Convolutional Neural Networks

97© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_7

CHAPTER 7

CNN in TensorFlow
This chapter will demonstrate how to use TensorFlow to build a CNN

model. A CNN model can help you build an image classifier that can

predict/classify the images. In general, you create some layers in the model

architecture with initial values of weight and bias. Then you tune weight

and bias with the help of a training data set. There is another approach

that involves using a pretrained model such as InceptionV3 to classify

the images. You can use this transfer learning approach where you add

some layers (whose parameter s are trained) on top of layers of pretrained

models (with parameter values intact) to make very powerful classifiers.

In this chapter, I will use TensorFlow to show how to develop a

convolution network for various computer vision applications. It is easier

to express a CNN architecture as a graph of data flows.

�Why TensorFlow for CNN Models?
In TensorFlow, images can be represented as three-dimensional arrays

or tensors of shape (height, width and channels). TensorFlow provides

the flexibility to quickly iterate, allows you to train models faster, and

enables you to run more experiments. When taking TensorFlow models to

production, you can run them on large-scale GPUs and TPUs.

98

�TensorFlow Code for Building an Image
Classifier for MNIST Data
In this section, I’ll take you through an example to understand how to

implement a CNN in TensorFlow.

The following code imports MNIST data sets with 28×28 grayscale

images of digits from the TensorFlow contrib package and loads all the

required libraries. Here, the aim is to build the classifier to predict the digit

given in the image.

from tensorflow.contrib.learn.python.learn.datasets.mnist

import read_data_sets

from tensorflow.python.framework import ops

import tensorflow as tf

import numpy as np

You then start a graph session.

Start a graph session

sess = tf.Session()

You load the MNIST data and create the train and test sets.

Load data

from keras.datasets import mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

You then normalize the train and test set features.

Z- score or Gaussian Normalization

X_train = X_train - np.mean(X_train) / X_train.std()

X_test = X_test - np.mean(X_test) / X_test.std()

As this is a multiclass classification problem, it is always better to use

the one-hot encoding of the output class values.

Chapter 7 CNN in TensorFlow

99

Convert labels into one-hot encoded vectors

num_class = 10

train_labels = tf.one_hot(y_train, num_class)

test_labels = tf.one_hot(y_test, num_class)

Let’s set the model parameters now as these images are grayscale.

Hence, the depth of image (channel) is 1.

Set model parameters

batch_size = 784

samples =500

learning_rate = 0.03

img_width = X_train[0].shape[0]

img_height = X_train[0].shape[1]

target_size = max(train_labels) + 1

num_channels = 1 # greyscale = 1 channel

epoch = 200

no_channels = 1

conv1_features = 30

filt1_features = 5

conv2_features = 15

filt2_features = 3

max_pool_size1 = 2 # NxN window for 1st max pool layer

max_pool_size2 = 2 # NxN window for 2nd max pool layer

fully_connected_size1 = 150

Chapter 7 CNN in TensorFlow

100

Let’s declare the placeholders for the model. The input data features,

target variable, and batch sizes can be changed for the training and

evaluation sets.

Declare model placeholders

x_input_shape = (batch_size, img_width, img_height, num_channels)

x_input = tf.placeholder(tf.float32, shape=x_input_shape)

y_target = tf.placeholder(tf.int32, shape=(batch_size))

eval_input_shape = (samples, img_width, img_height, num_channels)

eval_input = tf.placeholder(tf.float32, shape=eval_input_shape)

eval_target = tf.placeholder(tf.int32, shape=(samples))

Let’s declare the model variables’ weight and bias values for input and

hidden layer’s neurons.

Declare model variables

W1 = tf.Variable(tf.random_normal([filt1_features,

filt1_features, no_channels, conv1_features]))

b1 = tf.Variable(tf.ones([conv1_features]))

W2 = tf.Variable(tf.random_normal([filt2_features,

filt2_features, conv1_features, conv2_features]))

b2 = tf.Variable(tf.ones([conv2_features]))

Let’s declare the model variables for fully connected layers and define

the weights and bias for these last 2 layers.

Declare model variables for fully connected layers

resulting_width = img_width // (max_pool_size1 * max_pool_size2)

resulting_height = img_height // (max_pool_size1 * max_pool_size2)

full1_input_size = resulting_width * resulting_height * conv2_

features

W3 = tf.Variable(tf.truncated_normal([full1_input_size,

fully_connected_size1], stddev=0.1, dtype=tf.float32))

Chapter 7 CNN in TensorFlow

101

b3 = tf.Variable(tf.truncated_normal([fully_connected_size1],

stddev=0.1, dtype=tf.float32))

W_out = tf.Variable(tf.truncated_normal([fully_connected_size1,

target_size], stddev=0.1, dtype=tf.float32))

b_out = tf.Variable(tf.truncated_normal([target_size],

stddev=0.1, dtype=tf.float32))

Let’s create a helper function to define the convolutional and max

pooling layers.

Define helper functions for the convolution and maxpool layers:

def conv_layer(x, W, b):

 �conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],

padding='SAME')

 conv_with_b = tf.nn.bias_add(conv, b)

 conv_out = tf.nn.relu(conv_with_b)

 return conv_out

def maxpool_layer(conv, k=2):

 �return tf.nn.max_pool(conv, ksize=[1, k, k, 1],

strides=[1, k, k, 1], padding='SAME')

A neural network model is defined with two hidden layers and two

fully connected layers. A rectified linear unit is used as the activation

function for the hidden layers and the final output layers.

Initialize Model Operations

def my_conv_net(input_data):

 # First Conv-ReLU-MaxPool Layer

 conv_out1 = conv_layer(input_data, W1, b1)

 maxpool_out1 = maxpool_layer(conv_out1)

Chapter 7 CNN in TensorFlow

102

 # Second Conv-ReLU-MaxPool Layer

 conv_out2 = conv_layer(maxpool_out1, W2, b2)

 maxpool_out2 = maxpool_layer(conv_out2)

 �# Transform Output into a 1xN layer for next fully

connected layer

 final_conv_shape = maxpool_out2.get_shape().as_list()

 �final_shape = final_conv_shape[1] * final_conv_shape[2] *

final_conv_shape[3]

 �flat_output = tf.reshape(maxpool_out2, [final_conv_shape[0],

final_shape])

 # First Fully Connected Layer

 �fully_connected1 = tf.nn.relu(tf.add(tf.matmul(flat_output,

W3), b3))

 # Second Fully Connected Layer

 �final_model_output = tf.add(tf.matmul(fully_connected1,

W_out), b_out)

 return(final_model_output)

model_output = my_conv_net(x_input)

test_model_output = my_conv_net(eval_input)

You will use a softmax cross entropy function (tends to work better for

multiclass classification) to define the loss that operates on logits.

Declare Loss Function (softmax cross entropy)

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=model_output, labels=y_target))

Let’s define the train and test sets’ prediction function.

Create a prediction function

prediction = tf.nn.softmax(model_output)

test_prediction = tf.nn.softmax(test_model_output)

Chapter 7 CNN in TensorFlow

103

To determine the model accuracy on each batch, let’s define the

accuracy function.

Create accuracy function

def get_accuracy(logits, targets):

 batch_predictions = np.argmax(logits, axis=1)

 num_correct = np.sum(np.equal(batch_predictions, targets))

 return(100. * num_correct/batch_predictions.shape[0])

Let’s declare the training step and define the optimizer function.

Create an optimizer

my_optimizer = tf.train.AdamOptimizer(learning_rate, 0.9)

train_step = my_optimizer.minimize(loss)

Let’s initialize all the model variables declared earlier.

Initialize Variables

varInit = tf.global_variables_initializer()

sess.run(varInit)

Let’s start training the model and loop randomly through the batches

of data. You want to evaluate the model on the train and test set batches

and record the loss and accuracy.

Start training loop

train_loss = []

train_acc = []

test_acc = []

for i in range(epoch):

 random_index = np.random.choice(len(X_train), size=batch_size)

 random_x = X_train[random_index]

 random_x = np.expand_dims(random_x, 3)

 random_y = train_labels[random_index]

 train_dict = {x_input: random_x, y_target: random_y}

Chapter 7 CNN in TensorFlow

104

 sess.run(train_step, feed_dict=train_dict)

 �temp_train_loss, temp_train_preds = sess.run([loss,

prediction], feed_dict=train_dict)

 temp_train_acc = get_accuracy(temp_train_preds, random_y)

 �eval_index = np.random.choice(len(X_test),

size=evaluation_size)

 eval_x = X_test[eval_index]

 eval_x = np.expand_dims(eval_x, 3)

 eval_y = test_labels[eval_index]

 test_dict = {eval_input: eval_x, eval_target: eval_y}

 test_preds = sess.run(test_prediction, feed_dict=test_dict)

 temp_test_acc = get_accuracy(test_preds, eval_y)

The results of the model are recorded in the following format and

printed in the output:

Record and print results

train_loss.append(temp_train_loss)

train_acc.append(temp_train_acc)

test_acc.append(temp_test_acc)

print('Epoch # {}. Train Loss: {:.2f}. Train Acc : {:.2f} .

temp_test_acc : {:.2f}'.format(i+1,temp_train_loss,

temp_train_acc,temp_test_acc))

�Using a High-Level API for Building CNN
Models
TFLearn, TensorLayer, tflayers, TF-Slim, tf.contrib.learn, Pretty Tensor,

keras, and Sonnet are high-level TensorFlow APIs. If you use any of these

high-level APIs, you can build CNN models in a few lines of code. So, you

can explore any of these APIs for working smartly.

Chapter 7 CNN in TensorFlow

105© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_8

CHAPTER 8

CNN in Keras
This chapter will demonstrate how to use Keras to build CNN models.

A CNN model can help you build an image classifier that can predict

and classify the images. In general, you create some layers in the model

architecture with initial values of weight and bias. Then you tune the

weight and bias variables with the help of a training data set. You will

learn how to code in Keras in this context. There is another approach that

involves using pretrained models such as InceptionV3 and ResNet50 that

can classify the images.

Let’s define a CNN model and evaluate how well it performs. You

will use a structure with a convolutional layer; then you will use max

pooling and flatten out the network to fully connect the layers and make

predictions.

�Building an Image Classifier for MNIST Data
in Keras
Here I will demonstrate the process of building a classifier for handwritten

digits using the popular MNIST data set.

This task is a big challenge for playing with neural networks, but it can

be managed on a single computer.

The MNIST database contains 60,000 training images and 10,000

testing images.

106

Start by importing Numpy and setting a seed for the computer’s

pseudorandom number generator. This allows you to reproduce the results

from your script.

import numpy as np

random seed for reproducibility

np.random.seed(123)

Next, you import the sequential model type from Keras. This is simply

a linear stack of neural network layers.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers import Conv2D

from keras.layers import MaxPooling2d

#Now we will import some utilities

from keras.utils import np_utils

#Fixed dimension ordering issue

from keras import backend as K

K.set_image_dim_ordering('th')

#Load image data from MNIST

#Load pre-shuffled MNIST data into train and test sets

(X_train,y_train),(X_test, y_test)=mnist.load_data()

#Preprocess imput data for Keras

Reshape input data.

reshape to be [samples][channels][width][height]

X_train=X_train.reshape(X_train.shape[0],1,28,28)

X_test=X_test.reshape(X_test.shape[0],1,28,28)

Chapter 8 CNN in Keras

107

to convert our data type to float32 and normalize our database

X_train=X_train.astype('float32')

X_test=X_test.astype('float32')

print(X_train.shape)

Z-scoring or Gaussian Normalization

X_train=X_train - np.mean(X_train) / X_train.std()

X_test=X_test – np.mean(X_test) / X_test.std()

#(60000, 1, 28, 28)

convert 1-dim class arrays to 10 dim class metrices

#one hot encoding outputs

y_train=np_utils.to_categorical(y_train)

y_test-np_utils.to_categorical(y_test)

num_classes=y_test.shape[1]

print(num_classes)

#10

#Define a simple CNN model

print(X_train.shape)

#(60000,1,28,28)

�Define the Network Structure
The network structure is as follows:

•	 Network has a convolutional input layer, with 32 feature

maps with a size of 5×5. The activation function is

rectified linear unit.

•	 The max pool layer has a size of 2×2.

•	 The dropout is set to 30 percent.

•	 You can flatten the layer.

Chapter 8 CNN in Keras

108

•	 The network has a fully connected layer with 240 units,

and the activation function is an exponential linear unit.

•	 Last layer of the netowrk is a fully connected output layer

with ten units, and the activation function is softmax.

Then you compile the model by using binary cross entropy as the loss

function and adagrad as the optimizer.

�Define the Model Architecture
The architecture consists of a combination of the convolutional layer and

max pooling layer and a dense layer at the end.

create a model

 model=Sequential()

 �model.add(Conv2D(32, (5,5), input_shape=(1,28,28),

activation='relu'))

 model.add(MaxPooling2D(pool_size=(2,2)))

 �model.add(Dropout(0.3)) # Dropout, one form of

regularization

 model.add(Flatten())

 model.add(Dense(240,activation='elu'))

 model.add(Dense(num_classes, activation='softmax'))

 print(model.output_shape)

 (None, 10)

Compile the model

model.compile(loss='binary_crossentropy', optimizer='adagrad',

matrices=['accuracy'])

Chapter 8 CNN in Keras

109

Then you fit the model by using the training data sets by taking a

batch size of 200. The model takes first 200 instances/rows (from the 1st

to the 200th) from the training data set and trains the network. Then the

model takes second 200 instances (from the 201st to the 400th) for the

training network again. In this way, you propagate all instances through

the networks. The model requires less memory as you train networks with

fewer instances each time. But the small batch size doesn’t offer a good

estimate of the gradient, and hence tuning the weight and bias can be

challenge.

One epoch means one forward pass and one backward pass of all the

training examples. It takes several iterations to complete one epoch.

Here, you have 60,000 training examples, and your batch size is 200, so

it will take 300 iterations to complete 1 epoch.

Fit the model

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=1, batch_size=200)

Evaluate model on test data

 # Final evaluation of the model

 scores =model.evaluate(X_test, y_test, verbose=0)

 print("CNN error: % .2f%%" % (100-scores[1]*100))

 # CNN Error: 17.98%

 # Save the model

 # save model

 model_json= model.to_join()

 with open("model_json", "w") as json_file:

 json_file.write(model_json)

 # serialize weights to HDFS

 model.save_weights("model.h5")

Chapter 8 CNN in Keras

110

�Building an Image Classifier with CIFAR-10
Data
This section explains how you can build a classifier that can classify the ten

labels of the CIFAR-10 data set using the Keras CNN model.

Note T he CIFAR-10 data set consists of 60,000 32×32 color
images in 10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images.

�###########Building CNN Model with CIFAR10 data###################

plot cifar10 instances

 from keras.datasets import cifar10

 from matplotlib import pyplot

 from scipy.misc import toimage

 import numpy

 from keras.models import Sequential

 from keras.layers import Dense

 from keras.layers import Dropout

 from keras.layers import Flatten

 from keras.layers import Conv2D

 from keras.layers import MaxPooling2d

 #Now we will import some utilities

 from keras.utils import np_utils

 from keras.layers.normalization import BatchNormalization

 #Fixed dimension ordering issue

 from keras import backend as K

 K.set_image_dim_ordering('th')

 # fix random seed for reproducibility

 seed=12

Chapter 8 CNN in Keras

111

 numpy.random.seed(seed)

 #Preprocess imput data for Keras

 # Reshape input data.

 # reshape to be [samples][channels][width][height]

 �X_train=X_train.reshape(X_train.shape[0],3,32,32).

astype('float32')

 �X_test=X_test.reshape(X_test.shape[0],3,32,32).

astype('float32')

 # Z-scoring or Gaussian Normalization

 X_train=X_train - np.mean(X_train) / X_train.std()

 X_test=X_test – np.mean(X_test) / X_test.std()

 # convert 1-dim class arrays to 10 dim class metrices

 #one hot encoding outputs

 y_train=np_utils.to_categorical(y_train)

 y_test-np_utils.to_categorical(y_test)

 num_classes=y_test.shape[1]

 print(num_classes)

 #10

 #Define a simple CNN model

 print(X_train.shape)

 #(50000,3,32,32)

�Define the Network Structure
The network structure is as follows:

•	 The convolutional input layer has 32 feature maps with

a size of 5×5, and the activation function is a rectified

linear unit.

•	 The max pool layer has a size of 2×2.

Chapter 8 CNN in Keras

112

•	 The convolutional layer has 32 feature maps with a size

of 5×5, and the activation function is a rectified linear

unit.

•	 The network has batch normalization.

•	 The max pool layer has a size of 2×2.

•	 The dropout is set to 30 percent.

•	 You can flatten the layer.

•	 The fully connected layer has 240 units, and the

activation function is an exponential linear unit.

•	 The fully connected output layer has ten units, and the

activation function is softmax.

Then you fit the model by using the training data sets by taking a

batch size of 200. You take the first 200 instances/rows (from the 1st to the

200th) from the training data set and train the network. Then you take the

second 200 instances (from the 201st to the 400th) to train the network

again. In this way, you propagate all instances through the networks. One

epoch means one forward pass and one backward pass of all the training

examples. It takes several iterations to complete one epoch.

Here, you have 50,000 training examples, and your batch size is 200, so

it will take 250 iterations to complete 1 epoch.

�Define the Model Architecture
A sequential model is created with a combination of convolutional and

max pooling layers. Later a fully connected dense layer is attached.

create a model

 model=Sequential()

 �model.add(Conv2D(32, (5,5), input_shape=(3,32,32),

activation='relu'))

Chapter 8 CNN in Keras

113

 model.add(MaxPooling2D(pool_size=(2,2)))

 �model.add(Conv2D(32, (5,5), activation='relu',

padding='same'))

 model.add(BatchNormalization())

 model.add(MaxPooling2D(pool_size=(2,2)))

 �model.add(Dropout(0.3)) # Dropout, one form of

regularization

 model.add(Flatten())

 model.add(Dense(240,activation='elu'))

 model.add(Dense(num_classes, activation='softmax'))

 print(model.output_shape)

 model.compile(loss='binary_crossentropy', optimizer='adagrad')

 # fit model

 �model.fit(X_train, y_train, validation_data=(X_test,

y_test), epochs=1, batch_size=200)

 # Final evaluation of the model

 scores =model.evaluate(X_test, y_test, verbose=0)

 print("CNN error: % .2f%%" % (100-scores[1]*100

�Pretrained Models
In this section, I will show how you can use pretrained models such as

VGG and inception to build up a classifier.

Chapter 8 CNN in Keras

114

Inception-V3 pre-trained model can detect/classify objects of 22,000

categories. It can detect/classify tray, torch, umbrella and others.

In many scenario, we need to build classifiers as per our requirement.

For that, transfer learning is used where we use pre-trained model (used

for feature extraction) and multiple neural.

Chapter 8 CNN in Keras

115© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_9

CHAPTER 9

RNN and LSTM
This chapter will discuss the concepts of recurrent neural networks (RNNs)

and their modified version, long short-term memory (LSTM). LSTM is

mainly used for sequence prediction. You will learn about the varieties of

sequence prediction and then learn how to do time-series forecasting with

the help of the LSTM model.

�The Concept of RNNs
A recurrent neural network is a type of artificial neural network that is best

suited to recognizing patterns in sequences of data, such as text, video,

speech, language, genomes, and time-series data. An RNN is an extremely

powerful algorithm that can classify, cluster, and make predictions about

data, particularly time series and text.

RNN can be seen as an MLP network with addition of loops to the

architecture. In Figure 9-1, you can see that there is an input layer (with

nodes such as x1, x2, and so on), a hidden layer (with nodes such as h1,

h2, and so on), and an output layer (with nodes such as y1, y2, and so on).

This is similar to the MLP architecture. The difference is that the nodes

of the hidden layers are interconnected. In a vanilla (basic) RNN/LSTM,

nodes are connected in one direction. This means that h2 depends on h1

(and x2), and h3 depends on h2 (and x3). The node in the hidden layer is

decided by the previous node in the hidden layer.

116

Figure 9-1.  An RNN

Figure 9-2.  The sequence

This kind of architecture ensures that the output at t=n depends on the

inputs at t=n, t=n-1, …, and t=1. In other words, the output depends on the

sequence of data rather than a single piece of data (Figure 9-2).

Chapter 9 RNN and LSTM

117

Figure 9-3 shows how the nodes of the hidden layer are connected to

the nodes of the input layer.

Figure 9-3.  The connections

In an RNN, if the sequences are quite long, the gradients (which

are essential for tuning the weight and bias) are computed during their

training (backpropagation). They either vanish (multiplication of many

small values less than 1) or explode (multiplication of many large values

more than 1), causing the model to train very slowly.

Chapter 9 RNN and LSTM

118

�The Concept of LSTM
Long short-term memory is a modified RNN architecture that tackles

the problem of vanishing and exploding gradients and addresses the

problem of training over long sequences and retaining memory. All RNNs

have feedback loops in the recurrent layer. The feedback loops help

keep information in “memory” over time. But, it can be difficult to train

standard RNNs to solve problems that require learning long-term temporal

dependencies. Since the gradient of the loss function decays exponentially

with time (a phenomenon known as the vanishing gradient problem), it

is difficult to train typical RNNs. That is why an RNN is modified in a way

that it includes a memory cell that can maintain information in memory

for long periods of time. The modified RNN is better known as LSTM. In

LSTM, a set of gates is used to control when information enters memory,

which solves the vanishing or exploding gradient problem.

The recurrent connections add state or memory to the network and

allow it to learn and harness the ordered nature of observations within

input sequences. The internal memory means outputs of the network are

conditional on the recent context in the input sequence, not what has just

been presented as input to the network.

�Modes of LSTM
LSTM can have one of the following modes:

•	 One-to-one model

•	 One-to-many model

•	 Many-to-one model

•	 Many-to-many model

In addition to these modes, synced many-to-many models are also

being used, especially for video classification.

Chapter 9 RNN and LSTM

119

Figure 9-4 shows a many-to-one LSTM. This implies that many inputs

create one output in this model.

Figure 9-4.  Many-to-one LSTM

�Sequence Prediction
LSTM is best suited for sequence data. LSTM can predict, classify, and

generate sequence data. A sequence means an order of observations,

rather than a set of observations. An example of a sequence is a test series

where the timestamps and values are in the order (chronologically) of

the sequence. Another example is a video, which can be considered as a

sequence of images or a sequence of audio clips.

Prediction based on the sequence of data is called the sequence

prediction. Sequence prediction is said to have four types.

•	 Sequence numeric prediction

•	 Sequence classification

•	 Sequence generation

•	 Sequence-to-sequence prediction

Chapter 9 RNN and LSTM

120

�Sequence Numeric Prediction
Sequence numeric prediction is predicting the next value for a given

sequence. Its use cases are stock market forecasting and weather

forecasting. Here’s an example:

•	 Input sequence: 3,5,8,12

•	 Output: 17

Input Output (Number)

3,5,8,12

LSTM

Sequence
Predic�on Model

17

�Sequence Classification
Sequence classification predicts the class label for a given sequence. Its use

cases are fraud detection (which uses the transaction sequence as input

to classify/predict whether an account has been hacked or not) and the

classification of students based on performance (the sequence of exam

marks over the last six months chronologically). Here’s an example:

•	 Input sequence: 2,4,6,8

•	 Output: “Increasing”

Input Output (Label)

2,4,6,8
LSTM

Sequence
Classification Model

“Increasing”

Chapter 9 RNN and LSTM

121

�Sequence Generation
Sequence generation is when you generate a new output sequence that has

the same properties as the input sequences in the input corpus. Its use

cases are text generation (given 100 lines of a blog, generate the next line

of the blog) and music generation (given the music examples, generate the

new musical piece). Here’s an example:

•	 Input sequence: [3, 5,8,12], [4,6,9,13]

•	 Output: [5,7,10,14]

Input Output (Sequence)

LSTM

Sequence
Genera�on Model

�Sequence-to-Sequence Prediction
Sequence-to-sequence prediction is when you predict the next sequence

for a given sequence. Its use cases are document summarization and

multistep time-series forecasting (predicting a sequence of numbers).

Here’s an example:

•	 Input sequence: [3, 5,8,12,17]

•	 Output: [23,30,38]

Input Output (sequence)

LSTM

Sequence to
Sequence Model

Chapter 9 RNN and LSTM

122

As mentioned, LSTM is used for time-series forecasting in businesses.

Let’s go through an LSTM model. Assume that a CSV file is given where

the first column is a timestamp and the second column is a value. It can

represent sensor (IoT) data.

Given the time-series data, you have to predict values for the future.

�Time-Series Forecasting with the LSTM
Model
Here is the complete example of time-series forecasting with LSTM:

Simple LSTM for a time series data

import numpy as np

import matplotlib.pyplot as plt

from pandas import read_csv

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error

import pylab

convert an array of values into a timeseries data

def create_timeseries(series, ts_lag=1):

 dataX = []

 dataY = []

 n_rows = len(series)-ts_lag

 for i in range(n_rows-1):

 a = series[i:(i+ts_lag), 0]

 dataX.append(a)

 dataY.append(series[i + ts_lag, 0])

Chapter 9 RNN and LSTM

123

 X, Y = np.array(dataX), np.array(dataY)

 return X, Y

fix random seed for reproducibility

np.random.seed(230)

load dataset

dataframe = read_csv('sp500.csv', usecols=[0])

plt.plot(dataframe)

plt.show()

Figure 9-5 shows a plot of the data.

Figure 9-5.  Plot of the data

Here’s some more code:

Changing datatype to float32 type

series = dataframe.values.astype('float32')

Normalize the dataset

scaler = StandardScaler()

series = scaler.fit_transform(series)

Chapter 9 RNN and LSTM

124

split the datasets into train and test sets

train_size = int(len(series) * 0.75)

test_size = len(series) - train_size

train, test = series[0:train_size,:], series[train_

size:len(series),:]

reshape the train and test dataset into X=t and Y=t+1

ts_lag = 1

trainX, trainY = create_timeseries(train, ts_lag)

testX, testY = create_timeseries(test, ts_lag)

reshape input data to be [samples, time steps, features]

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.

shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

Define the LSTM model

model = Sequential()

model.add(LSTM(10, input_shape=(1, ts_lag)))

model.add(Dense(1))

model.compile(loss='mean_squared_logarithmic_error',

optimizer='adagrad')

fit the model

model.fit(trainX, trainY, epochs=500, batch_size=30)

make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

rescale predicted values

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

Chapter 9 RNN and LSTM

125

calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0],

trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0],

testPredict[:,0]))

print('Test Score: %.2f RMSE' % (testScore))

plot baseline and predictions

pylab.plot(trainPredictPlot)

pylab.plot(testPredictPlot)

pylab.show()

In Figure 9-6, you can see the plot of actual versus predicted time

series. The part in orange is the training data, the part in blue is the test

data, and the part in green is the predicted output.

Figure 9-6.  Plot of actual versus predicted time series

So far, we have learnt the concepts of RNN, LSTM and time series

forecasting with LSTM model.

Chapter 9 RNN and LSTM

126

LSTM has been used in text classification. We use LSTM (vanilla LSTM

or bi-directional LSTM) for building text classifiers. First, text corpus is

converted into numbers by using word (semantic) embedding such as

word2vec or glove. Then, sequence classification is done through LSTM.

This approach offers much more accuracy than typical bag of words or

tf-idf followed by ML classifiers such as SVM, Random Forest. In

chapter 11, we can see how LSTM can be used for classifiers.

Chapter 9 RNN and LSTM

127© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_10

CHAPTER 10

Speech to Text
and Vice Versa
In this chapter, you will learn about the importance of speech-to-text and

text-to-speech conversion. You will also learn about the functions and

components needed to do this type of conversion.

Specifically, I will cover the following:

•	 Why you would want to convert speech to text

•	 Speech as data

•	 Speech features that map speech to a matrix

•	 Spectrograms, which map speech to an image

•	 Building a classifier for speech recognition through

mel-frequency cepstral coefficient (MFCC) features

•	 Building a classifier for speech recognition through

spectrograms

•	 Open source approaches for speech recognition

•	 Popular cognitive service providers

•	 The future of speech of text

128

�Speech-to-Text Conversion
Speech-to-text conversion, in layman’s terms, means that an app recognizes

the words spoken by a person and converts the voice to written text. There

are lots of reasons you would want to use Speech-to-Text conversion.

•	 Blind or physically challenged people can control

different devices using only voice.

•	 You can keep records of meetings and other events by

converting the spoken conversation to text transcripts.

•	 You can convert the audio in video and audio files to

get subtitles of the words being spoken.

•	 You can translate words into another language by

speaking into a device in one language and converting

the text to speech in another language.

�Speech as Data
The first step of making any automated speech recognition system is to

get the features. In other words, you identify the components of the audio

wave that are useful for recognizing the linguistic content and delete all the

other useless features that are just background noises.

Each person’s speech is filtered by the shape of their vocal tract and

also by the tongue and teeth. What sound is coming out depends on this

shape. To identify the phoneme being produced accurately, you need

to determine this shape accurately. You could say that the shape of the

vocal tract manifests itself to form an envelope of the short-time power

spectrum. It’s the job of MFCCs to represent this envelope accurately.

Speech can also be represented as data by converting it to a

spectrogram (Figure 10-1).

Chapter 10 Speech to Text and Vice Versa

129

�Speech Features: Mapping Speech
to a Matrix
MFCCs are widely used in automated speech and speaker recognition.

The mel scale relates the perceived frequency, or pitch, of a pure tone to its

actual measured frequency.

You can convert an audio in frequency scale to the mel scale using the

following formula:

M f f() = +()1125 1 700ln /

To convert it back to frequency, use the following formula:

M m m- () = () -()1 700 1125 1exp /

Figure 10-1.  Speech as data

Chapter 10 Speech to Text and Vice Versa

130

Here is the function to extract MFCC features in Python:

def mfcc�(signal,samplerate=16000,winlen=0.025,winstep=0.01,

numcep=13, nfilt=26,nfft=512,lowfreq=0,highfreq=None,

preemph=0.97, ceplifter=22,appendEnergy=True)

These are the parameters used:

•	 signal: This is the signal for which you need to

calculate the MFCC features. It should be an array of

N*1 (read a WAV file).

•	 samplerate: This is the signal’s sample rate at which

you are working.

•	 winlen: This is the analysis window length in seconds.

By default it is 0.025 second.

•	 winstep: This is the successive window step. By default

it is 0.01 second.

•	 numcep: This is the number of ceptrum that the function

should return. By default it is 13.

•	 nfilt: This is the number of filters in the filter bank. By

default it is 26.

•	 nfft: This is the size of the fast Fourier transform (FFT).

By default it is 512.

•	 lowfreq: This is the lowest band edge, in hertz. By

default it is 0.

•	 highfreq: This is the highest band edge, in hertz. By

default it is the sample rate divided by 2.

Chapter 10 Speech to Text and Vice Versa

131

•	 preemph: This applies a preemphasis filter with preemph

as the coefficient. 0 means no filter. By default it is 0.97.

•	 ceplifter: This applies a lifter to the final cepstral

coefficients. 0 means no lifter. By default it is 22.

•	 appendEnergy: The zeroth cepstral coefficient is

replaced with the log of the total frame energy, if it is set

to true.

This function returns a Numpy array containing features. Each row

contains one feature vector.

�Spectrograms: Mapping Speech
to an Image
A spectrogram is photographic or electronic representation of a spectrum.

The idea is to convert an audio file into images and pass the images

into deep learning models such as a CNN and LSTM for analysis and

classification.

The spectrogram is computed as a sequence of FFTs of windowed data

segments. A common format is a graph with two geometric dimensions;

one axis represents time, and another axis represents frequency. A third

dimension uses the color or size of point to indicate the amplitude of a

particular frequency at a particular time. Spectrograms are usually created

in one of two ways. They can be approximated as a filter bank that results

from a series of band-pass filters. Or, in Python, there is a direct function

that maps audio to a spectrogram.

Chapter 10 Speech to Text and Vice Versa

132

�Building a Classifier for Speech Recognition
Through MFCC Features
To build a classifier for speech recognition, you need to have the python_

speech_features Python package installed.

You can use the command pip install python_speech_features to

install this package.

The mfcc function creates a feature matrix for an audio file. To build a

classifier that recognizes the voices of different people, you need to collect

speech data of them in WAV format. Then you convert all the audio files

into a matrix using the mfcc function. The code to extract the features from

the WAV file is shown here:

If you run the previous code, you will get output in the following form:

[[7.66608682 7.04137131 7.30715423 ..., 9.43362359 9.11932984

 9.93454603]

 [4.9474559 4.97057377 6.90352236 ..., 8.6771281 8.86454547

 9.7975147]

 [7.4795622 6.63821063 5.98854983 ..., 8.78622734 8.805521

 9.83712966]

 ...,

 [7.8886269 6.57456605 6.47895433 ..., 8.62870034 8.79965464

 9.67997298]

Chapter 10 Speech to Text and Vice Versa

133

 [5.73028657 4.87985847 6.64977329 ..., 8.64089442 8.62887745

 9.90470194]

 [8.8449656 6.67098127 7.09752316 ..., 8.84914694 8.97807983

 9.45123015]]

Here, each row represents one feature vector.

Collect as many voice recordings of a person as you can and append

the feature matrix of each audio file in this matrix.

This will act as your training data set.

Repeat the same steps with all the other classes.

Once the data set is prepared, you can fit this data into any deep

learning model (that is used for classification) to classify the voices of

different people.

Note T o see the full code of a classifier using MFCC features, you
can visit www.navinmanaswi.com/SpeechRecognizer.

�Building a Classifier for Speech Recognition
Through a Spectrogram
Using the spectrogram approach converts all the audio files to images

(Figure 10-2), so all you have to do is convert all the sound files in the

training data into images and feed those images to a deep learning model

just like you do in a CNN.

Chapter 10 Speech to Text and Vice Versa

http://www.navinmanaswi.com/SpeechRecognizer

134

Here is the Python code to convert an audio file to a spectrogram:

Figure 10-2.  Spectogram of speech sample

Chapter 10 Speech to Text and Vice Versa

135

�Open Source Approaches
There are open source packages available for Python that perform

speech-to-text and text-to-speech conversion.

The following are some open source speech-to-text conversion APIs:

•	 PocketSphinx

•	 Google Speech

•	 Google Cloud Speech

•	 Wit.ai

•	 Houndify

•	 IBM Speech to Text API

•	 Microsoft Bing Speech

Having used all of these, I can say that they work quite well; the

American accent is especially clear.

If you are interested in evaluating the accuracy of the conversion, you

need one metric: the word error rate (WER).

In the next section, I will discuss each API mentioned previously.

�Examples Using Each API
Let’s go through each API.

�Using PocketSphinx
PocketSphinx is an open source API used for speech-to-text conversions. It

is a lightweight speech recognition engine, specifically tuned for handheld

and mobile devices, though it works equally well on the desktop. Simply

use the command pip install PocketSphinx to install the package.

Chapter 10 Speech to Text and Vice Versa

136

import speech_recognition as sr

from os import path

AUDIO_FILE = "MyAudioFile.wav"

r = sr.Recognizer()

with sr.AudioFile(AUDIO_FILE) as source:

 audio = r.record(source)

try:

 print("Sphinx thinks you said " + r.recognize_sphinx(audio))

except sr.UnknownValueError:

 print("Sphinx could not understand audio")

except sr.RequestError as e:

 print("Sphinx error; {0}".format(e))

===

�Using the Google Speech API
Google provides its own Speech API that can be implemented in Python

code and can be used to create different applications.

recognize speech using Google Speech Recognition

try:

 �print("Google Speech Recognition thinks you said " +

r.recognize_google(audio))

except sr.UnknownValueError:

 print("Google Speech Recognition could not understand audio")

except sr.RequestError as e:

 �print("Could not request results from Google Speech

Recognition service;{0}".format(e))

Chapter 10 Speech to Text and Vice Versa

137

�Using the Google Cloud Speech API
You can also use the Google Cloud Speech API for the conversion. Create

an account on the Google Cloud and copy the credentials.

GOOGLE_CLOUD_SPEECH_CREDENTIALS = r"INSERT THE CONTENTS OF THE

GOOGLE CLOUD SPEECH JSON CREDENTIALS FILE HERE" try:

 �print("Google Cloud Speech thinks you said " +

r.recognize_google_cloud(audio, credentials_json=GOOGLE_

CLOUD_SPEECH_CREDENTIALS))

except sr.UnknownValueError:

 print("Google Cloud Speech could not understand audio")

except sr.RequestError as e:

 �print("Could not request results from Google Cloud Speech

service; {0}".format(e))

�Using the Wit.ai API
The Wit.ai API enables you to make a speech-to-text converter. You need to

create an account and then create a project. Copy your Wit.ai key and start

coding.

#recognize speech using Wit.ai

WIT_AI_KEY = "INSERT WIT.AI API KEY HERE" # Wit.ai keys are

32-character uppercase alphanumeric strings

try:

 �print("Wit.ai thinks you said " + r.recognize_wit(audio,

key=WIT_AI_KEY))

except sr.UnknownValueError:

 print("Wit.ai could not understand audio")

except sr.RequestError as e:

 �print("Could not request results from Wit.ai service; {0}".

format(e))

Chapter 10 Speech to Text and Vice Versa

138

�Using the Houndify API
Similar to the previous APIs, you need to create an account at Houndify

and get your client ID and key. This allows you to build an app that

responds to sound.

recognize speech using Houndify

HOUNDIFY_CLIENT_ID = "INSERT HOUNDIFY CLIENT ID HERE"

Houndify client IDs are Base64-encoded strings

HOUNDIFY_CLIENT_KEY = "INSERT HOUNDIFY CLIENT KEY HERE"

Houndify client keys are Base64-encoded strings

try:

 �print("Houndify thinks you said " + r.recognize_

houndify(audio, client_id=HOUNDIFY_CLIENT_ID, client_

key=HOUNDIFY_CLIENT_KEY))

except sr.UnknownValueError:

 print("Houndify could not understand audio")

except sr.RequestError as e:

 �print("Could not request results from Houndify service;

{0}".format(e))

�Using the IBM Speech to Text API
The IBM Speech to Text API enables you to add IBM’s speech recognition

capabilities to your applications. Log in to the IBM cloud and start your

project to get an IBM username and password.

IBM Speech to Text

recognize speech using IBM Speech to Text

IBM_USERNAME = "INSERT IBM SPEECH TO TEXT USERNAME HERE" # IBM

Speech to Text usernames are strings of the form XXXXXXXX-XXXX-

XXXX-XXXX-XXXXXXXXXXXX

Chapter 10 Speech to Text and Vice Versa

139

IBM_PASSWORD = "INSERT IBM SPEECH TO TEXT PASSWORD HERE" # IBM

Speech to Text passwords are mixed-case alphanumeric strings

try:

 �print("IBM Speech to Text thinks you said " + r.recognize_

ibm(audio, username=IBM_USERNAME, password=IBM_PASSWORD))

except sr.UnknownValueError:

 print("IBM Speech to Text could not understand audio")

except sr.RequestError as e:

 �print("Could not request results from IBM Speech to Text

service; {0}".format(e))

�Using the Bing Voice Recognition API
This API recognizes audio coming from a microphone in real time. Create

an account on Bing.com and get a Bing Voice Recognition API key.

recognize speech using Microsoft Bing Voice Recognition

BING_KEY = "INSERT BING API KEY HERE" # Microsoft Bing Voice

Recognition API key is 32-character lowercase hexadecimal

strings

try:

 �print("Microsoft Bing Voice Recognition thinks you said " +

r.recognize_bing(audio, key=BING_KEY))

except sr.UnknownValueError:

 �print("Microsoft Bing Voice Recognition could not

understand audio")

except sr.RequestError as e:

 �print("Could not request results from Microsoft Bing Voice

Recognition service; {0}".format(e))

Once you have converted the speech into text, you cannot expect

100 percent accuracy. To measure the accuracy, you can use the WER.

Chapter 10 Speech to Text and Vice Versa

140

�Text-to-Speech Conversion
This section of the chapter focuses on converting written text to an audio file.

�Using pyttsx
Using a Python package called pyttsx, you can convert text to audio.

Do a pip install pyttsx. If you are using python 3.6 then do

pip3 install pyttsx3.

import pyttsx

engine = pyttsx.init()

engine.say("Your Message")

engine.runAndWait()

�Using SAPI
You can also use SAPI to do text-to-speech conversion in Python.

from win32com.client import constants, Dispatch

Msg = "Hi this is a test"

speaker = Dispatch("SAPI.SpVoice") #Create SAPI SpVoice Object

speaker.Speak(Msg) #Process TTS

del speaker

�Using SpeechLib
You can take the input from a text file and convert it to audio using

SpeechLib, as shown here:

from comtypes.client import CreateObject

engine = CreateObject("SAPI.SpVoice")

Chapter 10 Speech to Text and Vice Versa

141

stream = CreateObject("SAPI.SpFileStream")

from comtypes.gen import SpeechLib

infile = "SHIVA.txt"

outfile = "SHIVA-audio.wav"

stream.Open(outfile, SpeechLib.SSFMCreateForWrite)

engine.AudioOutputStream = stream

f = open(infile, 'r')

theText = f.read()

f.close()

engine.speak(theText)

stream.Close()

Many times, you have to edit the audio so that you can remove a voice

from the audio file. The next section shows you how.

�Audio Cutting Code
Make a CSV file of audio that contains the comma-separated values of the

details of the audio and perform the following using Python:

import wave

import sys

import os

import csv

origAudio = wave.open('Howard.wav', 'r') #change path

frameRate = origAudio.getframerate()

nChannels = origAudio.getnchannels()

sampWidth = origAudio.getsampwidth()

nFrames = origAudio.getnframes()

filename = 'result1.csv' #change path

Chapter 10 Speech to Text and Vice Versa

142

exampleFile = open(filename)

exampleReader = csv.reader(exampleFile)

exampleData = list(exampleReader)

count = 0

for data in exampleData:

 #for selections in data:

 print('Selections ', data[4], data[5])

 count += 1

 if data[4] == 'startTime' and data[5] == 'endTime':

 print('Start time')

 else:

 start = float(data[4])

 end = float(data[5])

 origAudio.setpos(start*frameRate)

 �chunkData = origAudio.readframes(int((end-

start)*frameRate))

 �outputFilePath = 'C:/Users/Navin/outputFile{0}.wav'.

format(count) # change path

 chunkAudio = wave.open(outputFilePath, 'w')

 chunkAudio.setnchannels(nChannels)

 chunkAudio.setsampwidth(sampWidth)

 chunkAudio.setframerate(frameRate)

 chunkAudio.writeframes(chunkData)

 chunkAudio.close()

�Cognitive Service Providers
Let’s look at some cognitive service providers that help with speech

processing.

Chapter 10 Speech to Text and Vice Versa

143

�Microsoft Azure
Microsoft Azure provides the following:

•	 Custom Speech Service: This overcomes speech

recognition barriers such as speaking style, vocabulary,

and background noise.

•	 Translator Speech API: This enables real-time speech

translation.

•	 Speaker Identification API: This can identify the

speakers based on a speech sample of each speaker in

the given audio data.

•	 Bing Speech API: This converts audio to text,

understands intent, and converts text back to speech

for natural responsiveness.

�Amazon Cognitive Services
Amazon Cognitive Services provides Amazon Polly, a service that

turns text into speech. Amazon Polly lets you create applications that

talk, enabling you to build entirely new categories of speech-enabled

products.

•	 47 voices and 24 languages can be used, and an Indian

English option is provided.

•	 Tones such as whispering, anger, and so on, can be

added to particular parts of the speech using Amazon

effects.

Chapter 10 Speech to Text and Vice Versa

144

•	 You can instruct the system how to pronounce a

particular phrase or word in a different way. For

example, “W3C” is pronounced as World Wide Web

Consortium, but you can change that to pronounce

just the acronym. You can also provide the input text in

SSML format.

�IBM Watson Services
There are two services from IBM Watson.

•	 Speech to text: U.S. English, Spanish, and Japanese

•	 Text to speech: U.S. English, U.K. English, Spanish,

French, Italian, and German

�The Future of Speech Analytics
Speech recognition technology has been making a great progress. Every

year, it is about 10 to 15 percent more accurate than the previous year. In

the future, it will provide the most interactive interface for computers yet.

There are many applications that you will soon be witnessing in the

marketplace, including interactive books, robotic control, and self-driving

car interfaces. Speech data offers some exciting new possibilities because

it is the future of the industry. Speech intelligence enables people to

message, take or give orders, raise complaints and to do any work where

they used to type manually. It offers a great customer experience and

perhaps that is why all customer-facing departments and businesses tend

to use speech applications very heavily. I can see a great future for speech

application developers.

Chapter 10 Speech to Text and Vice Versa

145© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_11

CHAPTER 11

Developing Chatbots
Artificial intelligence systems that act as interfaces for human and

machine interactions through text or voice are called chatbots.

The interactions with chatbots may be either straightforward or

complex. An example of a straightforward interaction could be asking

about the latest news report. The interactions can become more complex

when they are about troubleshooting a problem with, say, your Android

phone. The term chatbots has gained immense popularity in the past

year and has grown into the most preferred platform for user interaction

and engagement. A bot, an advanced form of a chatbot, helps automate

“user-performed” tasks.

This chapter on chatbots will serve as an all-encompassing guide to

the what, how, where, when, and why of chatbots!

Specifically, I will cover the following:

•	 Why you would want to use chatbots

•	 The designs and functions of chatbots

•	 The steps for building a chatbot

•	 Chatbot development using APIs

•	 The best practices of chatbots

146

�Why Chatbots?
It is important for a chatbot to understand what information a user is

seeking, called the intent. Suppose a user wants to know the nearest

vegetarian restaurant; the user can ask that question in many possible

ways. A chatbot (specifically the intent classifier inside the chatbot)

must be able to understand the intent because the user wants to get the

right answer. In fact, to give the right answer, the chatbot must be able to

understand the context, intent, entities, and sentiment. The chatbot has to

even take account of whatever is discussed in the session. For example, the

user might ask the question “What is the price of chicken biryani there?”

Though the user has asked for a price, the chat engine can misunderstand

and assume the user is looking for a restaurant. So, in response, the

chatbot may provide the name of the restaurant.

�Designs and Functions of Chatbots
A chatbot stimulates intelligent conversations with humans through the

application of AI.

The interface through which conversation takes place is facilitated via

either spoken or written text. Facebook Messenger, Slack, and Telegram

make use of chatbot messaging platforms. They serve many purposes,

including ordering products online, investing and managing finances,

and so on. An important aspect of chatbots is that they make contextual

conversation a possibility. The chatbots converse with users in a way

similar to how human beings converse in their daily lives. Though it is

possible for chatbots to converse contextually, they still have a long way to

go in terms of communicating contextually with everything and anything.

But chat interfaces are making use of language to connect the machine

to the man, helping people get things done in a convenient manner by

providing information in a contextual manner.

Chapter 11 Developing Chatbots

147

Moreover, chatbots are redefining the way businesses are being

conducted. From reaching out to the consumers to welcoming them to

the ecosystem of the business to providing information to the consumers

about various products and their features, chatbots are helping with it all.

They are emerging as the most convenient way of dealing with consumers

in a timely and satisfactory manner.

�Steps for Building a Chatbot
A chatbot is built to communicate with users and give them the feeling that

they are communicating with a human and not a bot. But when users are

giving input, it is common that they will not give input in the proper way.

In other words, they may enter unnecessary punctuation marks, or there

may be different ways of asking the same question.

For example, for “Restaurants near me?” a user could input

“Restaurants beside me?” or “Find a nearby restaurant.”

Therefore, you need to preprocess the data so that the chatbot engine

can easily understand it. Figure 11-1 shows the process, which is detailed

in the following sections.

Figure 11-1.  A flowchart to show how a chatbot engine processes an
input string and gives a valid reply.

Chapter 11 Developing Chatbots

148

�Preprocessing Text and Messages
Preprocessing text and messages includes several steps, covered next.

�Tokenization

Chopping up sentences into single words (called tokens) is called

tokenization. In Python, generally a string is tokenized and stored in a list.

For example, the sentence “Artificial intelligence

is all about applying mathematics” becomes the

following:

[“Artificial”, “intelligence”, “is”, “all”, “about”,

“applying”, “mathematics”]

Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

l = "Artificial intelligence is all about applying mathematics"

token = TreebankWordTokenizer().tokenize(l)

print(token)

�Removing Punctuation Marks

You can also remove unnecessary punctuation marks in sentences.

For example, the sentence “Can I get the list of

restaurants, which gives home delivery.” becomes

the following:

“Can I get the list of restaurants which gives home

delivery.”

Chapter 11 Developing Chatbots

149

Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

from nltk.corpus import stopwords

l = "Artificial intelligence is all about applying

mathematics!"

token = TreebankWordTokenizer().tokenize(l)

output = []

output = [k for k in token if k.isalpha()]

print(output)

�Removing Stop Words

Stop words are the words present in a sentence that don’t make much

difference if removed. Though the format of the sentence changes, this

helps a lot in natural language understanding (NLU).

For example, the sentence “Artificial intelligence

can change the lifestyle of the people.” becomes the

following after removing stop words:

“Artificial intelligence change lifestyle people.”

Here is the example code:

from nltk.tokenize import TreebankWordTokenizer

from nltk.corpus import stopwords

l = "Artificial intelligence is all about applying mathematics"

token = TreebankWordTokenizer().tokenize(l)

stop_words = set(stopwords.words('english'))

output= []

for k in token:

 if k not in stop_words:

 output.append(k)

print(output)

Chapter 11 Developing Chatbots

150

Which words are considered as the stop words can vary. There are

some predefined sets of stop words provided by Natural Language Toolkit

(NLTK), Google, and more.

�Named Entity Recognition

Named entity recognition (NER), also known as entity identification, is the

task of classifying entities in text into predefined classes such as the name

of a country, the name of a person, and so on. You can also define your

own classes.

For example, applying NER to the sentence “Today’s

India vs Australia cricket match was fantastic.” gives

you the following output:

[Today’s]Time [India] Country vs [Australia] Country

[cricket] Game match was fantastic.

To run the code for NER, you need to download and import the

necessary packages, as mentioned in the following code.

Using Stanford NER

To run the code, download english.all.3class.distsim.crf.ser.gz

and stanford-ner.jar files.

from nltk.tag import StanfordNERTagger

from nltk.tokenize import word_tokenize

StanfordNERTagger("stanford-ner/classifiers/english.all.3class.

distsim.crf.ser.gz",

"stanford-ner/stanford-ner.jar")

text = "Ron was the founder of Ron Institute at New york"

text = word_tokenize(text)

ner_tags = ner_tagger.tag(text)

print(ner_tags)

Chapter 11 Developing Chatbots

151

Using MITIE NER (Pretrained)

Download the ner_model.dat file of MITIE to run the code.

from mitie.mitie import *

from nltk.tokenize import word_tokenize

print("loading NER model...")

ner = named_entity_extractor("mitie/MITIE-models/english/

ner_model.dat".encode("utf8"))

text = "Ron was the founder of Ron Institute at New york".

encode("utf-8")

text = word_tokenize(text)

ner_tags = ner.extract_entities(text)

print("\nEntities found:", ner_tags)

for e in ner_tags:

 range = e[0]

 tag = e[1]

 entity_text = " ".join(text[i].decode() for i in range)

 print(str(tag) + " : " + entity_text)

Using MITIE NER (Self-Trained)

Download the total_word_feature_extractor.dat file of MITIE

(https://github.com/mit-nlp/MITIE) to run the code.

from mitie.mitie import *

sample = ner_training_instance([b"Ron", b"was", b"the", b"founder",

b"of", b"Ron", b"Institute", b"at", b"New", b"York", b"."])

sample.add_entity(range(0, 1), "person".encode("utf-8"))

sample.add_entity(range(5, 7), "organization".encode("utf-8"))

sample.add_entity(range(8, 10), "Location".encode("utf-8"))

Chapter 11 Developing Chatbots

https://github.com/mit-nlp/MITIE

152

trainer = ner_trainer("mitie/MITIE-models/english/total_word_

feature_extractor.dat".encode("utf-8"))

trainer.add(sample)

ner = trainer.train()

tokens = [b"John", b"was", b"the", b"founder", b"of", b"John",

b"University", b"."]

entities = ner.extract_entities(tokens)

print ("\nEntities found:", entities)

for e in entities:

 range = e[0]

 tag = e[1]

 entity_text = " ".join(str(tokens[i]) for i in range)

 print (" " + str(tag) + ": " + entity_text)

�Intent Classification

Intent classification is the step in NLU where you try to understand what

the user wants. Here are two examples of input to a chatbot to find places

nearby:

•	 “I need to buy groceries.”: The intent is to look for a

grocery store nearby.

•	 “I want to have vegetarian food.”: The intent is to look

for restaurants nearby, ideally vegetarian ones.

Basically, you need to understand what the user is looking for and

accordingly classify the request into a certain category of intent (Figure 11-2).

Chapter 11 Developing Chatbots

153

To do this, you need to train a model to classify requests into intents

using an algorithm, going from sentences to vectors to a model.

Word Embedding

Word embedding is the technique of converting text to numbers. It is

difficult to apply any algorithm in text. Hence, you have to convert it to

numbers.

The following are different types of word embedding techniques.

Figure 11-2.  General flow of intent classification, from sentences to
vectors to a model

Chapter 11 Developing Chatbots

154

Count Vector

Suppose you have three documents (D1, D2, and D3) and there are N

unique words in the group of documents. You create a (D×N) matrix,

called C, which is known as the count vector. Each entry of the matrix is the

frequency of the unique word in that document.

Let’s see this using an example.

D1: Pooja is very lazy.

D2: But she is intelligent.

D3: She hardly comes to class.

Here, D=3 and N=12.

The unique words are hardly, lazy, But, to, Pooja, she, intelligent,

comes, very, class, and is.

Hence, the count vector, C, will be the following:

Hardly laziest But to Pooja she intelligent comes very class is

D1 0 1 0 0 1 0 0 0 1 0 1

D2 0 0 1 0 0 1 1 0 0 0 1

D3 1 0 0 1 0 1 0 1 0 1 0

Term Frequency-Inverse Document Frequency (TF-IDF)

For this technique, you give each word in the sentence a number

depending upon how many times that word occurs in that sentence and

also depending upon the document. Words occurring many times in a

sentence and not so many times in a document will have high values.

Chapter 11 Developing Chatbots

155

For example, consider a set of sentences:

•	 “I am a boy.”

•	 “I am a girl.”

•	 “Where do you live?”

TF-IDF transforms the feature set for the previous sentences, as

shown here:

Am Boy Girl Where do you live

1. 0.60 0.80 0 0 0 0 0

2. 0.60 0 0.80 0 0 0 0

3. 0 0 0 0.5 0.5 0.5 0.5

You can import the TFIDF package and use it to create this table.

Now let’s see some sample code. You can use a support vector classifier

on the TF-IDF transformed features of the request string.

#import required packages

import pandas as pd

from random import sample

from sklearn.preprocessing import LabelEncoder

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import f1_score, accuracy_score

read csv file

data = pd.read_csv("intent1.csv")

print(data.sample(6))

Chapter 11 Developing Chatbots

156

Before continuing with the code, here’s an example of the data set:

Description (Message) intent_label (Target)

Good Non-Veg restaurant near me 0

I am looking for a hospital 1

Good hospital for Heart operation 1

International school for kids 2

Non-Veg restaurant around me 0

School for small Kids 2

In this example, these are the values to use:

•	 0 means looking for a restaurant.

•	 1 means looking for a hospital.

•	 2 means looking for a school.

Now let’s work on the data set.

split dataset into train and test.

X_train, X_test, Y_train, Y_test = train_test_split(data

["Description"], data["intent_label"], test_size=3)

print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

vectorize the input using tfidf values.

tfidf = TfidfVectorizer()

tfidf = tfidf.fit(X_train)

X_train = tfidf.transform(X_train)

X_test = tfidf.transform(X_test)

label encoding for different categories of intents

le = LabelEncoder().fit(Y_train)

Y_train = le.transform(Y_train)

Y_test = le.transform(Y_test)

Chapter 11 Developing Chatbots

157

other models like GBM, Random Forest may also be used

model = SVC()

model = model.fit(X_train, Y_train)

p = model.predict(X_test)

calculate the f1_score. average="micro" since we want to

calculate score for multiclass.

Each instance(rather than class(search for macro average))

contribute equally towards the scoring.

print("f1_score:", f1_score(Y_test, p, average="micro"))

print("accuracy_score:",accuracy_score(Y_test, p))

Word2Vec

There are different methods of getting word vectors for a sentence, but the

main theory behind all the techniques is to give similar words a similar

vector representation. So, words like man and boy and girl will have similar

vectors. The length of each vector can be set. Examples of Word2vec

techniques include GloVe and CBOW (n-gram with or without skip grams).

You can use Word2vec by training it for your own data set (if you have

enough data for the problem), or you can use pretrained data. Word2vec

is available on the Internet. Pretrained models have been trained on huge

documents such as Wikipedia data, tweets, and so on, and they’re almost

always good for the problem.

An example of some techniques that you can use to train your intent

classifier is to use a 1D-CNN on word vectors of the words in a sentence,

appended in a list for each sentence.

import required packages

from gensim.models import Word2Vec

import pandas as pd

import numpy as np

from keras.preprocessing.text import Tokenizer

Chapter 11 Developing Chatbots

158

from keras.preprocessing.sequence import pad_sequences

from keras.utils.np_utils import to_categorical

from keras.layers import Dense, Input, Flatten

from keras.layers import Conv1D, MaxPooling1D, Embedding, Dropout

from keras.models import Model

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import f1_score, accuracy_score

read data

data = pd.read_csv("intent1.csv")

split data into test and train

X_train, X_test, Y_train, Y_test = train_test_split(data

["Description"], data["intent_label"], test_size=6)

label encoding for different categories of intents

le = LabelEncoder().fit(Y_train)

Y_train = le.transform(Y_train)

Y_test = le.transform(Y_test)

get word_vectors for words in training set

X_train = [sent for sent in X_train]

X_test = [sent for sent in X_test]

by default genism.Word2Vec uses CBOW, to train word vecs.

We can also use skipgram with it

by setting the "sg" attribute to number of skips we want.

CBOW and Skip gram for the sentence "Hi Ron how was your

day?" becomes:

Continuos bag of words: 3-grams {"Hi Ron how", "Ron how was",

"how was your" ...}

Skip-gram 1-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi

how was", "Ron how

your", ...}

Chapter 11 Developing Chatbots

159

See how: "Hi Ron was" skips over "how".

Skip-gram 2-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi

Ron your", "Hi was

your", ...}

See how: "Hi Ron your" skips over "how was".

Those are the general meaning of CBOW and skip gram.

word_vecs = Word2Vec(X_train)

print("Word vectors trained")

prune each sentence to maximum of 20 words.

max_sent_len = 20

tokenize input strings

tokenizer = Tokenizer()

tokenizer.fit_on_texts(X_train)

sequences = tokenizer.texts_to_sequences(X_train)

sequences_test = tokenizer.texts_to_sequences(X_test)

word_index = tokenizer.word_index

vocab_size = len(word_index)

sentences with less than 20 words, will be padded with zeroes

to make it of length 20

sentences with more than 20 words, will be pruned to 20.

x = pad_sequences(sequences, maxlen=max_sent_len)

X_test = pad_sequences(sequences_test, maxlen=max_sent_len)

100 is the size of wordvec.

embedding_matrix = np.zeros((vocab_size + 1, 100))

make matrix of each word with its word_vectors for the CNN model.

so each row of a matrix will represent one word. There will

be a row for each word in

Chapter 11 Developing Chatbots

160

the training set

for word, i in word_index.items():

 try:

 embedding_vector = word_vecs[word]

 except:

 embedding_vector = None

 if embedding_vector is not None:

 embedding_matrix[i] = embedding_vector

print("Embeddings done")

vocab_size = len(embedding_matrix)

CNN model requires multiclass labels to be converted into one

hot ecoding.

i.e. each column represents a label, and will be marked one

for corresponding label.

y = to_categorical(np.asarray(Y_train))

embedding_layer = Embedding(vocab_size,

 100,

 weights=[embedding_matrix],

 input_length=max_sent_len,

 trainable=True)

sequence_input = Input(shape=(max_sent_len,), dtype='int32')

stack each word of a sentence in a matrix. So each matrix

represents a sentence.

Each row in a matrix is a word(Word Vector) of a sentence.

embedded_sequences = embedding_layer(sequence_input)

build the Convolutional model.

l_cov1 = Conv1D(128, 4, activation='relu')(embedded_sequences)

l_pool1 = MaxPooling1D(4)(l_cov1)

l_flat = Flatten()(l_pool1)

Chapter 11 Developing Chatbots

161

hidden = Dense(100, activation='relu')(l_flat)

preds = Dense(len(y[0]), activation='softmax')(hidden)

model = Model(sequence_input, preds)

model.compile(loss='binary_crossentropy',optimizer='Adam')

print("model fitting - simplified convolutional neural

network")

model.summary()

train the model

model.fit(x, y, epochs=10, batch_size=128)

#get scores and predictions.

p = model.predict(X_test)

p = [np.argmax(i) for i in p]

score_cnn = f1_score(Y_test, p, average="micro")

print("accuracy_score:",accuracy_score(Y_test, p))

print("f1_score:", score_cnn)

The model fitting is a simplified convolutional neural network, as

shown here:

Layer (Type) Output Shape Param #

input_20 (InputLayer) (None, 20) 0

embedding_20 (Embedding) (None, 20, 100) 2800

conv1d_19 (Conv1D) (None, 17, 128) 51328

max_pooling1d_19 (MaxPooling) (None, 4, 128) 0

flatten_19 (Flatten) (None, 512) 0

dense_35 (Dense) (None, 100) 51300

dense_36 (Dense) (None, 3) 303

Chapter 11 Developing Chatbots

162

Here are the numbers of parameters:

•	 Total parameters: 105,731

•	 Trainable parameters: 105,731

•	 Nontrainable parameters: 0

Here are some important functions of Word2vec using the Gensim

package:

•	 This is how you import Gensim and load the pretrained

model:

import genism

#loading the pre-trained model

model = gensim.models.KeyedVectors.

load_word2vec_format('GoogleNews-vectors-

negative300.bin', binary=True)

•	 This is the pretrained model from Google for the

English language, and it is of 300 dimensions.

•	 This is how to find the word vector of a word from a

pretrained model:

getting word vectors of a word

lion = model['lion']

print(len(lion))

•	 This is how to find the similarity index between two words:

#Calculating similarity index

print(model.similarity('King', 'Queen'))

Chapter 11 Developing Chatbots

163

•	 This is how to find an odd one out from the set of words:

#Choose odd one out

print(model.doesnt_match("Mango Grape Tiger

Banana Strawberry".split()))

•	 This is how to find the most similar words:

print(model.most_similar(positive=[Prince,

Girl], negative=[Boy]))

A unique feature of Word2vec is that you can get

vectors, from other vectors using vector operations.

For example, a vector of “Prince” minus a vector of

“boy” plus a vector of “girl” will be almost equal to a

vector of “Princess.” Hence, when you compute this,

you will get a vector of “Princess.”

Vec ("Prince") – Vec("boy") + Vec("girl") ≈
Vec("Princess")

This was just an example. This case is valid in many

other cases. This is a specialty of Word2vec and is

useful in estimating the similar words, next words,

natural language generation (NLG), and so on.

Table 11-1 shows pretrained models with other parameters.

Chapter 11 Developing Chatbots

164

Ta
bl

e
11

-1
. 

D
if

fe
re

n
t P

re
tr

ai
n

ed
 M

od
el

s
w

it
h

O
th

er
 P

ar
am

et
er

s

M
od

el
 F

ile
Nu

m
be

r o
f

Di
m

en
si

on
s

Co
rp

us

Si
ze

Vo
ca

bu
la

ry

Si
ze

Ar
ch

ite
ct

ur
e

Co
nt

ex
t W

in
do

w

Si
ze

Au
th

or

Go
og

le
 N

ew
s

30
0

10
0B

3M
W

or
d2

Ve
c

Bo
W

, ~
5

Go
og

le

Fr
ee

ba
se

 ID
s

10
00

10
0B

1.
4M

W
or

d2
Ve

c,

Sk
ip

-g
ra

m

Bo
W

, ~
10

Go
og

le

Fr
ee

ba
se

 n
am

es
10

00
10

0B
1.

4M
W

or
d2

Ve
c,

Sk
ip

-g
ra

m

Bo
W

, ~
10

Go
og

le

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d
5

50
6B

40
0,

00
0

Gl
oV

e
10

+
10

Gl
oV

e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d
5

10
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d
5

20
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

W
ik

ip
ed

ia
 +

 G
ig

aw
or

d
5

30
0

6B
40

0,
00

0
Gl

oV
e

10
+

10
Gl

oV
e

Co
m

m
on

 C
ra

w
l 4

2B
30

0
42

B
1.

9M
Gl

oV
e

Ad
aG

ra
d

Gl
oV

e

Co
m

m
on

 C
ra

w
l 8

40
B

30
0

84
0B

2.
2M

Gl
oV

e
Ad

aG
ra

d
Gl

oV
e

W
ik

ip
ed

ia
 d

ep
en

de
nc

y
30

0
-

17
4,

00
0

W
or

d2
Ve

c
Sy

nt
ac

tic

De
pe

nd
en

ci
es

Le
vy

 &

Go
ld

be
rg

DBP
e

di
a

ve
ct

or
s

(w
ik

i2
ve

c)
10

00
-

-
W

or
d2

Ve
c

Bo
W

, 1
0

Id
io

Chapter 11 Developing Chatbots

165

�Building the Response

Reponses are another important part of chatbots. Based on how a chatbot

replies, a user may get attracted to it. Whenever a chatbot is made, one

thing that should be kept in mind is its users. You need to know who will

use it and for what purpose it will be used. For example, a chatbot for a

restaurant web site will be asked only about restaurants and foods. So, you

know more or less what questions will be asked. Therefore, for each intent,

you store multiple answers that can be used after identifying the intent

so the user will not get the same answer repeatedly. You can also have

one intent for any out-of-context questions; that intent can have multiple

answers, and choosing randomly, the chatbot can reply.

For example, if the intent is “hello,” you can have multiple replies such

as “Hello! How are you?” and “Hello! How are you doing?” and “Hi! How

can I help you?”

The chatbot can choose any one randomly for the reply.

In the following sample code, you are taking input from the user, but in

the original chatbot, the intent is defined by the chatbot itself based on any

question asked by the user.

import random

intent = input()

output = ["Hello! How are you","Hello! How are you doing","Hii!

How can I help you","Hey! There","Hiiii","Hello! How can I

assist you?","Hey! What's up?"]

if(intent == "Hii"):

 print(random.choice(output))

Chapter 11 Developing Chatbots

166

�Chatbot Development Using APIs
Creating a chatbot is not an easy task. You need an eye for detail and the

sharp mindedness to build a chatbot that can be put to good use. There are

two approaches to building a chatbot.

•	 Rule-based approach

•	 Machine learning approach that makes the system

learn on its own by streamlining data

Some chatbots are basic in nature, while others are more advanced

with AI brains. Chatbots that can understand natural language and

respond to them use AI brains, and technology enthusiasts are making use

of various sources such as Api.ai to create such AI-rich chatbots.

Programmers are leveraging the following services to build bots:

•	 Microsoft bot frameworks

•	 Wit.ai

•	 Api.ai

•	 IBM’s Watson

Other bot-building enthusiasts with limited or no programming skills

are making use of bot development platforms such as the following to

build chatbots:

•	 Chatfuel

•	 Texit.in

•	 Octane AI

•	 Motion.ai

Chapter 11 Developing Chatbots

167

There are different APIs that analyze text. The three major giants are as

follows:

•	 Cognitive Services of Microsoft Azure

•	 Amazon Lex

•	 IBM Watson

�Cognitive Services of Microsoft Azure

Let’s start with Microsoft Azure.

•	 Language Understanding Intelligent Service (LUIS):

This provides simple tools that enable you to build your

own language models (intents/entities) that allow any

application/bot to understand your commands and act

accordingly.

•	 Text Analytics API: This evaluates sentiment and topics

in order to understand what users want.

•	 Translator Text API: This automatically identifies the

language and then translates it into another language

in real time.

•	 Web Language Model API: This inserts spaces into a

string of words lacking spaces automatically.

•	 Bing Spell Check API: This enables users to correct

spelling errors; recognize the difference among names,

brand names, and slang; and understand homophones

as they are typing.

•	 Linguistic Analysis API: This allows you to identify

the concepts and actions in your text with part-of-

speech tagging and find phrases and concepts using

natural language parsers. It is highly useful for mining

customer feedback.

Chapter 11 Developing Chatbots

168

�Amazon Lex

Amazon Lex is a service for building conversational interfaces into any

application using voice and text. Unfortunately, there is no synonym

option, and there is no proper entity extraction and intent classification.

The following are some important benefits of using Amazon Lex:

•	 It’s simple. It guides you in creating a chatbot.

•	 It has deep learning algorithms. Algorithms such

as NLU and NLP are implemented for the chatbots.

Amazon has centralized this functionality so that it can

be easily used.

•	 It has easy deployment and scaling features.

•	 It has built-in integration with the AWS platform.

•	 It is cost effective.

�IBM Watson

IBM provides the IBM Watson API to quickly build your own chatbot. In

the implementation, approaching the journey is just as important as the

journey itself. Educating yourself on the Watson Conversational AI for the

enterprise basics of conversational design, and its impact on your business,

is essential in formulating a successful plan of action. This preparation will

allow you to communicate, learn, and monitor against a standard, allowing

your business to build a customer-ready and successful project.

Conversational design is the most important part of building a chatbot.

The first thing to understand is who the user is and what they want to

achieve.

IBM Watson has many technologies that you can easily integrate

in your chatbot; some of them are Watson Conversation, Watson Tone

Analyzer, speech to text, and many more.

Chapter 11 Developing Chatbots

169

�Best Practices of Chatbot Development
While building a chatbot, it is important to understand that there are

certain best practices that can be leveraged. This will help in creating a

successful user-friendly bot that can fulfill its purpose to have a seamless

conversation with the user.

One of the foremost things in this relation is to know the target audience

well. Next comes other things such as identifying the use case scenarios,

setting the tone of the chat, and identifying the messaging platforms.

By adhering to the following best practices, the desire to assure

seamless conversations with users can become a reality.

�Know the Potential Users
A thorough understanding of the target audience is the first step in

building a successful bot. The next stage is to know the purpose for which

the bot is being created.

Here are some points to remember:

•	 Know what the purpose of the specific bot is. It could be a

bot to entertain the audience, facilitate users to transact,

provide news, or serve as a customer service channel.

•	 Make the bot more customer friendly by learning about

the customer’s product.

�Read the User Sentiments and Make the Bot
Emotionally Enriching
A chatbot should be warm and friendly just like a human in order to

make the conversation a great experience. It has to smartly read as well as

understand user sentiments to promote content blocks that can prompt

Chapter 11 Developing Chatbots

170

the user to continue the conversation. The user will be encouraged to visit

again if the experience is a rich one the first time.

Here are some points to remember:

•	 Promote your product or turn users into brand

ambassadors by leveraging positive sentiments.

•	 Promptly address negative comments to stay afloat in

the conversation game.

•	 Whenever possible, use friendly language to make

users feel like they are interacting with a familiar

human.

•	 Make users feel comfortable by repeating inputs and

ensure that they are able to understand everything

being discussed.

Chapter 11 Developing Chatbots

171© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_12

CHAPTER 12

Face Detection and
Recognition
Face detection is the process of detecting a face in an image or video.

Face recognition is the process of detecting face in an image and then

using algorithms to identify who the face belongs to. Face recognition is

thus a form of person identification.

You first need to extract features from the image for training the

machine learning classifier to identify faces in the image. Not only are

these systems nonsubjective, but they are also automatic—no hand

labeling of facial features is required. You simply extract features from the

faces, train your classifier, and then use it to identify subsequent faces.

Since for face recognition you first need to detect a face from the

image, you can think of face recognition as a two-phase stage.

•	 Stage 1: Detect the presence of faces in an image or

video stream using methods such as Haar cascades,

HOG + Linear SVM, deep learning, or any other

algorithm that can localize faces.

•	 Stage 2: Take each of the faces detected during the

localization phase and learn whom the face belongs

to—this is where you actually assign a name to a face.

172

�Face Detection, Face Recognition, and Face
Analysis
There is a difference between face detection, face recognition, and face

analysis.

•	 Face detection: This is the technique of finding all the

human faces in an image.

•	 Face recognition: This is the next step after face

detection. In face recognition, you identify which

face belongs to which person using an existing image

repository.

•	 Face analysis: A face is examined, and some inference

is taken out such as age, complexion, and so on.

�OpenCV
OpenCV provides three methods for face recognition (see Figure 12-1):

•	 Eigenfaces

•	 Local binary pattern histograms (LBPHs)

•	 Fisherfaces

Chapter 12 Face Detection and Recognition

173

All three methods recognize a face by comparing the face with some

training set of known faces. For training, you supply the algorithm with

faces and label them with the person they belong to. When you use the

algorithm to recognize some unknown face, it uses the model trained on

the training set to make the recognition. Each of the three aforementioned

methods uses the training set a bit differently.

Laplacian faces can be another way to recognize face.

�Eigenfaces
The eigenfaces algorithm uses principal component analysis to construct

a low-dimensional representation of face images, which you will use as

features for the corresponding face images (Figure 12-2).

Figure 12-1.  Applying OpenCV methods to faces

Chapter 12 Face Detection and Recognition

174

For this, you collect a data set of faces with multiple face images of

each person you want to recognize—it’s like having multiple training

examples of an image class you want to label in image classification. With

this data set of face images, presumed to be the same width and height

and ideally with their eyes and facial structures aligned at the same (x, y)

coordinates, you apply an eigenvalue decomposition of the data set,

keeping the eigenvectors with the largest corresponding eigenvalues.

Given these eigenvectors, a face can then be represented as a linear

combination of what Kirby and Sirovich called eigenfaces. The eigenfaces

algorithm looks at the whole data set.

Figure 12-2.  Applying Eigenvalue decomposition and extracting 11
eigenfaces with the largest magnitude

Chapter 12 Face Detection and Recognition

175

�LBPH
You can analyze each image independently in LBPH. The LBPH method

is somewhat simpler, in the sense that you characterize each image in the

data set locally; when a new unknown image is provided, you perform the

same analysis on it and compare the result to each of the images in the

data set. The way that you analyze the images is by characterizing the local

patterns in each location in the image.

While the eigenfaces algorithm relies on PCA to construct a low-

dimensional representation of face images, the local binary pattern (LBP)

method relies on, as the name suggests, feature extraction.

First introduced by Ahonen et al. in the 2006 paper “Face Recognition

with Local Binary Patterns,” the method suggests dividing a face image into

a 7×7 grid of equally sized cells (Figure 12-3).

Figure 12-3.  Applying LBPH for face recognition starts by dividing
the face image into a 7x7 grid of equally sized cells

Chapter 12 Face Detection and Recognition

http://en.wikipedia.org/wiki/Local_binary_patterns

176

You then extract a local binary pattern histogram from each of the 49

cells. By dividing the image into cells, you introduce locality into the final

feature vector. Furthermore, cells in the center have more weight such that

they contribute more to the overall representation. Cells in the corners

carry less identifying facial information compared to the cells in the center

of the grid (which contain eyes, nose, and lip structures). Finally, you

concatenate this weighted LBP histogram from the 49 cells to form your

final feature vector.

�Fisherfaces
The Principal Component Analysis (PCA), which is the core of the

Eigenfaces method, finds a linear combination of features that maximizes

the total variance in data. While this is clearly a powerful way to represent

data, it doesn’t consider any classes and so a lot of discriminative

information may be lost when throwing components away. Imagine a

situation where the variance in your data is generated by an external

source, let it be the light. The components identified by a PCA do not

necessarily contain any discriminative information at all, so the projected

samples are smeared together and a classification becomes impossible.

The Linear Discriminant Analysis performs a class-specific

dimensionality reduction and was invented by the great statistician

Sir R. A. Fisher. The use of multiple measurements in taxonomic

problems. In order to find the combination of features that separates

best between classes the Linear Discriminant Analysis maximizes the

ratio of between-classes to within-classes scatter, instead of maximizing

the overall scatter. The idea is simple: same classes should cluster

tightly together, while different classes are as far away as possible from

each other in the lower-dimensional representation.

Chapter 12 Face Detection and Recognition

177

�Detecting a Face
The first feature that you need for performing face recognition is to detect

where in the current image a face is present. In Python you can use Haar

cascade filters of the OpenCV library to do this efficiently.

For the implementation shown here, I used Anaconda with Python 3.5,

OpenCV 3.1.0, and dlib 19.1.0. To use the following code, please make sure

that you have these (or newer) versions.

To do the face detection, a couple of initializations must be done, as

shown here:

The rest of the code will be an infinite loop that keeps getting the latest

image from the webcam, detects all faces in the image retrieved, draws

a rectangle around the largest face detected, and then finally shows the

input, output images in a window (Figure 12-4).

Chapter 12 Face Detection and Recognition

178

You can do this with the following code within an infinite loop:

Figure 12-4.  A sample output showing detected face

Chapter 12 Face Detection and Recognition

179

�Tracking the Face
The previous code for face detection has some drawbacks.

•	 The code might be computationally expensive.

•	 If the detected person is turning their head slightly, the

Haar cascade might not detect the face.

•	 It’s difficult to keep track of a face between frames.

A better approach for this is to do the detection of the face once and

then make use of the correlation tracker from the excellent dlib library to

just keep track of the faces from frame to frame.

Chapter 12 Face Detection and Recognition

180

For this to work, you need to import another library and initialize

additional variables.

Within the infinite for loop, you will now determine whether the dlib

correlation tracker is currently tracking a region in the image. If this is

not the case, you will use a similar code as before to find the largest face,

but instead of drawing the rectangle, you use the found coordinates to

initialize the correlation tracker.

Chapter 12 Face Detection and Recognition

181

Now the final bit within the infinite loop is to check again if the

correlation tracker is actively tracking a face (i.e., did it just detect a

face with the previous code, trankingFace=1?). If the tracker is actively

tracking a face in the image, you will update the tracker. Depending on the

quality of the update (i.e., how confident the tracker is about whether it is

still tracking the same face), you either draw a rectangle around the region

indicated by the tracker or indicate you are not tracking a face anymore.

Chapter 12 Face Detection and Recognition

182

As you can see in the code, you print a message to the console every

time you use the detector again. If you look at the output of the console

while running this application, you will notice that even if you move quite

a bit around on the screen, the tracker is quite good at following a face

once it is detected.

�Face Recognition
A face recognition system identifies the name of person present in the

video frame by matching the face in each frame of video with the trained

images and returns (and writes in a CSV file) the label if the face in the

frame is successfully matched. You will now see how to create a face

recognition system step-by-step.

First you import all the required libraries. face_recognition is the

simple library built using dlib’s state-of-the-art face recognition also built

with deep learning.

Argparse is a Python library that allows you to add your own

arguments to a file; it can then be used to input any image directory or a

file path at the time of execution.

Chapter 12 Face Detection and Recognition

http://dlib.net/

183

In the previous code, while running this Python file, you have to

specify the following: the training input image directory, video file which

we will use as data set, and an output CSV file to write the output at each

time frame.

By using the previous function, all image files from the specified folder

can be read.

The following function tests the input frame with the known training

images:

Chapter 12 Face Detection and Recognition

184

Now you define the function to extract the label for matched, known

images.

Read the input video to extract test frames.

Now define the labels of your training sets. Then match the extracted

frame from the given input video to get the desired results.

Chapter 12 Face Detection and Recognition

185

�Deep Learning–Based Face Recognition
Import the necessary packages.

Initialize the variables.

Chapter 12 Face Detection and Recognition

186

The label_img() function is used to create the label array, and the

detect_faces() function detects the face portion in the image.

The create_train_data() function is used for preprocessing the

training data.

Chapter 12 Face Detection and Recognition

187

The process_test_data() function is used to preprocess the testing data.

Then you create the model and fit the training data in the model.

Chapter 12 Face Detection and Recognition

188

Finally, you prepare the test data and predict the output.

�Transfer Learning
Transfer learning makes use of the knowledge gained while solving one

problem and applying it to a different but related problem.

Here you will see how you can use a pretrained deep neural network

called the Inception v3 model for classifying images.

The Inception model is quite capable of extracting useful information

from an image.

�Why Transfer Learning?
It’s well known that convolutional networks require significant amounts of

data and resources to train.

It has become the norm for researchers and practitioners alike to use

transfer learning and fine-tuning (that is, transferring the network weights

trained on a previous project such as ImageNet to a new task).

Chapter 12 Face Detection and Recognition

189

You can take two approaches.

•	 Transfer learning: You can take a CNN that has

been pretrained on ImageNet, remove the last fully

connected layer, and then treat the rest of the CNN as a

feature extractor for the new data set. Once you extract

the features for all images, you train a classifier for the

new data set.

•	 Fine-tuning: You can replace and retrain the classifier

on top of the CNN and also fine-tune the weights of the

pretrained network via backpropagation.

�Transfer Learning Example
In this example, first you will try to classify images by directly loading the

Inception v3 model.

Import all the required libraries.

Now define the storage directory for the model and then download the

Inception v3 model.

Chapter 12 Face Detection and Recognition

190

Load the pretrained model and define the function to classify any

given image.

Now that the model is defined, let’s check it for some images.

This gives a 91.11 percent correct result, but now if you check for some

person, this is what you get:

Chapter 12 Face Detection and Recognition

191

It’s 48.50 percent tennis ball!

Unfortunately, the Inception model seemed unable to classify images

of people. The reason for this was the data set used for training the

Inception model, which had some confusing text labels for classes.

You can instead reuse the pretrained Inception model and merely replace

the layer that does the final classification. This is called transfer learning.

First you input and process an image with the Inception model. Just

prior to the final classification layer of the Inception model, you save the

so-called transfer values to a cache file.

The reason for using a cache file is that it takes a long time to process

an image with the Inception model. When all the images in the new data

set have been processed through the Inception model and the resulting

transfer values are saved to a cache file, then you can use those transfer

values as the input to another neural network. You will then train the

second neural network using the classes from the new data set, so the

network learns how to classify images based on the transfer values from

the Inception model.

In this way, the Inception model is used to extract useful information

from the images, and another neural network is then used for the actual

classification.

�Calculate the Transfer Value
Import the transfer_value_cache function from the Inception file.

Chapter 12 Face Detection and Recognition

192

As of now, the transfer values are stored in the cache file. Now you will

create a new neural network.

Define the networks.

Here is the optimization method:

Here is the classification accuracy:

Here is the TensorFlow run:

Chapter 12 Face Detection and Recognition

193

Here is the helper function to perform batch training:

For optimizing, here is the code:

Chapter 12 Face Detection and Recognition

194

For plotting the confusion matrix, here is the code:

Chapter 12 Face Detection and Recognition

195

Here is the helper function for calculating the classifications:

Chapter 12 Face Detection and Recognition

196

Now let’s run it.

from datetime import timedelta

optimize(num_iterations=1000)

Global Step: 13100, Training Batch Accuracy: 100.0%

Global Step: 13200, Training Batch Accuracy: 100.0%

Global Step: 13300, Training Batch Accuracy: 100.0%

Global Step: 13400, Training Batch Accuracy: 100.0%

Global Step: 13500, Training Batch Accuracy: 100.0%

Global Step: 13600, Training Batch Accuracy: 100.0%

Global Step: 13700, Training Batch Accuracy: 100.0%

Global Step: 13800, Training Batch Accuracy: 100.0%

Global Step: 13900, Training Batch Accuracy: 100.0%

Global Step: 14000, Training Batch Accuracy: 100.0%

Time usage: 0:00:36

print_test_accuracy(show_example_errors=True,

show_confusion_matrix=True)

Chapter 12 Face Detection and Recognition

197

Accuracy on Test-Set: 83.2% (277 / 333)

Example errors:

Confusion Matrix:

[108 3 5] (0) Aamir Khan

[0 83 22] (1) Salman Khan

[4 22 86] (2) Shahrukh Khan

 (0) (1) (2)

�APIs
Many easy-to-use APIs are also available for the tasks of face detection and

face recognition.

Here are some examples of face detection APIs:

•	 PixLab

•	 Trueface.ai

•	 Kairos

•	 Microsoft Computer Vision

Here are some examples of face recognition APIs:

•	 Face++

•	 LambdaLabs

•	 KeyLemon

•	 PixLab

If you want face detection, face recognition, and face analysis from one

provider, currently there are three major giants that are leading here.

•	 Amazon’s Amazon Recognition API

•	 Microsoft Azure’s Face API

•	 IBM Watson’s Visual Recognition API

Chapter 12 Face Detection and Recognition

198

Amazon’s Amazon Recognition API can do four types of recognition.

•	 Object and scene detection: Recognition identifies

various interesting objects such as vehicles, pets, or

furniture, and it provides a confidence score.

•	 Facial analysis: You can locate faces within images

and analyze face attributes, such as whether the face is

smiling or the eyes are open, with certain confidence

scores.

•	 Face comparison: Amazon’s Amazon Recognition API

lets you measure the likelihood that faces in two images

are of the same person. Unfortunately, the similarity

measure of two faces of the same person depends

on the age at the time of the photos. Also, a localized

increase in the illumination of a face alters the results

of the face comparison.

•	 Facial recognition: The API identifies the person in a

given image using a private repository. It is fast and

accurate.

Microsoft Azure’s Face API will return a confidence score for how likely

it is that the two faces belong to one person. Microsoft also has other APIs

such as the following:

•	 Computer Vision API: This feature returns information

about visual content found in an image. It can use

tagging, descriptions, and domain-specific models to

identify content and label it with confidence.

•	 Content Moderation API: This detects potentially

offensive or unwanted images, text in various

languages, and video content.

Chapter 12 Face Detection and Recognition

199

•	 Emotion API: This analyzes faces to detect a range of

feelings and personalize your app’s responses.

•	 Video API: This produces stable video output, detects

motion, creates intelligent thumbnails, and detects and

tracks faces.

•	 Video Indexer: This finds insights in video such as

entities of speech, sentiment polarity of speech, and

audio timeline.

•	 Custom Vision Service: This tags a new image based on

the built-in models or the models built through training

data sets provided by you.

IBM Watson’s Visual Recognition API can do some specific detection

such as the following:

•	 It can determine the age of the person.

•	 It can determine the gender of the person.

•	 It can determine the location of the bounding box

around a face.

•	 It can return information about a celebrity who is

detected in the image. (This is not returned when a

celebrity is not detected.)

Chapter 12 Face Detection and Recognition

201© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4

APPENDIX 1�

Keras Functions for
Image Processing
Keras has a function called ImageDataGenerator that provides you with

batches of tensor image data with real-time data augmentation. Data will

be looped over in batches indefinitely.

Here is the function:

https://doi.org/10.1007/978-1-4842-3516-4

202

Here are the function’s arguments:

•	 featurewise_center: Data type boolean. Sets input

mean to 0 over the data set, feature-wise.

•	 samplewise_center: Data type boolean. Sets each

sample mean to 0.

•	 featurewise_std_normalization: Data type boolean.

Divides inputs by std of the data set, feature-wise.

•	 samplewise_std_normalization: Data type boolean.

Divides each input by its std.

•	 zca_epsilon: Epsilon for ZCA whitening. The default

is 1e-6.

•	 zca_whitening: boolean. Applies ZCA whitening.

•	 rotation_range: int. Sets degree of range for random

rotations.

•	 width_shift_range: Data type float (fraction of total

width). Sets range for random horizontal shifts.

•	 height_shift_range: Data type float (fraction of total

height). Sets range for random vertical shifts.

•	 shear_range: Data type float. Sets shear intensity

(shear angle in counterclockwise direction as radians).

•	 zoom_range: Data type float or [lower, upper]. Sets

range for random zoom. If a float, [lower, upper] =

[1-zoom_range, 1+zoom_range].

•	 channel_shift_range: Data type float. Sets range for

random channel shifts.

Appendix 1 Keras Functions for Image Processing

203

•	 fill_mode: One of {"constant", "nearest",

"reflect" or "wrap"}. Points outside the boundaries

of the input are filled according to the given mode.

•	 cval: Data type float or int. The value is used for

points outside the boundaries when fill_mode =

"constant".

•	 horizontal_flip: Data type boolean. Randomly flips

inputs horizontally.

•	 vertical_flip: Data type boolean. Randomly flips

inputs vertically.

•	 rescale: Rescaling factor. This defaults to None. If None

or 0, no rescaling is applied. Otherwise, you multiply

the data by the value provided (before applying any

other transformation).

•	 preprocessing_function: Function that will be implied

on each input. The function will run before any other

modification on it. The function should take one

argument, an image (a Numpy tensor with the rank 3),

and should output a Numpy tensor with the same shape.

•	 data_format: One of {"channels_first", "channels_

last"}. "channels_last" mode means that the

images should have shape (samples, height, width,

channels). "channels_first" mode means that

the images should have shape (samples, channels,

height, width). It defaults to the image_data_

format value found in your Keras config file at

~/.keras/keras.json. If you do not set it, then it will

be "channels_last".

Appendix 1 Keras Functions for Image Processing

204

Here are its methods:

•	 fit(x): Computes the internal data stats related to the

data-dependent transformations, based on an array of

sample data. This is required only if it’s featurewise_

center or featurewise_std_normalization or zca_

whitening.

•	 Here are the method’s arguments:

•	 x: Sample data. This should have a rank of 4.

In the case of grayscale data, the channel’s axis

should have a value of 1, and in the case of RGB

data, it should have a value of 3.

•	 augment: Data type boolean (default: False).

This sets whether to fit on randomly augmented

samples.

•	 rounds: Data type int (default: 1). If augment is

set, this sets how many augmentation passes

over the data to use.

•	 seed: Data type int (default: None). Sets a

random seed.

•	 flow(x, y): Takes Numpy data and label arrays and

generates batches of augmented/normalized data.

Yields batches indefinitely, in an infinite loop.

•	 Here are its arguments:

•	 x: Data. This should have the rank 4. In the case

of grayscale data, the channel’s axis should

have a value of 1, and in the case of RGB data, it

should have a value of 3.

•	 y: Labels.

Appendix 1 Keras Functions for Image Processing

205

•	 batch_size: Data type int (default: 32).

•	 shuffle: Data type boolean (default: True).

•	 seed: Data type int (default: None).

•	 save_to_dir: None or str (default: None). This

allows you to optimally specify a directory to

which to save the augmented pictures being

generated (useful for visualizing what you are

doing).

•	 save_prefix: Data type str (default: '').

This is the prefix to use for file names of saved

pictures (relevant only if save_to_dir is set).

•	 save_format: Either png or jpeg (relevant only

if save_to_dir is set). Default: png.

•	 yields: Tuples of (x, y) where x is a Numpy

array of image data and y is a Numpy array

of corresponding labels. The generator loops

indefinitely.

The function will help you augment image data in real time, during the

training itself, by creating batches of images. This will be passed during the

training time.

The processing function can be used to write some manual functions

also, which are not provided in the Keras library.

Appendix 1 Keras Functions for Image Processing

207© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4

�APPENDIX 2

Some of the Top Image
Data Sets Available

•	 MNIST: Perhaps the most famous image data set

available to you, this data set was compiled by

Yann LeCun and team. This data set is used almost

everywhere as a tutorial or introduction in computer

vision. It has some 60,000 training images and about

10,000 test images.

•	 CIFAR-10: This data set was made extremely famous by

the ImageNet challenge. It has 60,000 32×32 images in

10 classes, with 6,000 images per class. There are 50,000

training images and 10,000 test images.

•	 ImageNet: This labeled object image database is

used in the ImageNet Large Scale Visual Recognition

Challenge. It includes labeled objects, bounding boxes,

descriptive words, and SIFT features. There are a total

of 14,197,122 instances.

•	 MS COCO: The Microsoft Common Objects in COntext

(MS COCO) data set contains 91 common object

categories, with 82 of them having more than 5,000

labeled instances. In total, the data set has 2,500,000

https://doi.org/10.1007/978-1-4842-3516-4

208

labeled instances in 328,000 images. In contrast to the

popular ImageNet data set, COCO has fewer categories

but more instances per category. COCO is a large-scale

object detection, segmentation, and captioning data set.

•	 10k US Adult Faces: This data set contains 10,168

natural phace photographs and several measures

for 2,222 of the faces, including memorability scores,

computer vision and physical attributes, and landmark

point annotations.

•	 Flickr 32/47 Brands Logos: This consists of real-world

images collected from Flickr of company logos in

various circumstances. It comes in two versions: the

32-brand data set and the 47-brand data set. There are

a total of 8,240 images.

•	 YouTube Faces: This is a database of face videos

designed for studying the problem of unconstrained

face recognition in videos. The data set contains 3,425

videos of 1,595 different people.

•	 Caltech Pedestrian: The Caltech Pedestrian data set

consists of approximately 10 hours of 640×480 30Hz

video taken from a vehicle driving through regular

traffic in an urban environment. About 250,000 frames

(in 137 approximately minute-long segments) with

a total of 350,000 bounding boxes and 2,300 unique

pedestrians were annotated.

•	 PASCAL VOC: This is a huge data set for the image

classification task. It has 500,000 instances of data.

Appendix 2 Some of the Top Image Data Sets Available

209

•	 Microsoft Common Objects in Context (COCO): It

contains complex everyday scenes of common objects

in their natural context. Object highlighting, labeling,

and classification into 91 object types. It contains

2,500,000 instances.

•	 Caltech-256: This is a large data set of images for object

classification. Images are categorized and hand-sorted.

There are a total of 30,607 images.

•	 FBI crime data set: The FBI crime data set is amazing.

If you are interested in time-series data analysis, you

can use it to plot changes in crime rates at the national

level over a 20-year period.

Appendix 2 Some of the Top Image Data Sets Available

https://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/tables/1tabledatadecoverviewpdf/table_1_crime_in_the_united_states_by_volume_and_rate_per_100000_inhabitants_1994-2013.xls#_blank

211© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4

�APPENDIX 3

Medical Imaging:
DICOM File Format
Digital Imaging and Communication in Medicine (DICOM) is a type of

file format used in the medical domain to store or transfer images taken

during various tests of multiple patients.

�Why DICOM?
MRIs, CT scans, and X-rays can be stored in a normal file format, but

because of the uniqueness of a medical report, many different types of data

are required for a particular image.

�What Is the DICOM File Format?
This file format contains a header consisting of metadata of the image such

as the patient’s name, ID, blood group, and so on. It also contains space-

separated pixel values of the images taken during various medical tests.

https://doi.org/10.1007/978-1-4842-3516-4

212

The DICOM standard is a complex file format that can be handled by

the following packages:

•	 pydicom: This is a package for working with images in

Python. dicom was the older version of this package. As

of this writing, pydicom 1.x is the latest version.

•	 oro.dicom: This is a package for working with

images in R.

DICOM files are represented as FileName.dcm

.

Appendix 3 Medical Imaging: DICOM File Format

213© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4

Index

A
Amazon Cognitive

Services, 143–144
Amazon Lex, 168
Amazon’s Amazon Recognition

API, 198
Artificial intelligence systems, 145
Artificial neural network (ANN), 45

B
Bing Speech API, 143
Bing Spell Check API, 167
Bing Voice Recognition API, 139
Build models

linear model, 58
logistic regression, 62
Python file and import, 63
TensorFlow steps, 57

C
Caltech-256, 209
Caltech Pedestrian, 208
Chatbots

AI brains, 166
Amazon Lex, 168

Api.ai, 166
business, 147
designs and functions, 146
development platforms, 166
Facebook Messenger, Slack, and

Telegram, 146
IBM Watson API, 168
intent, 146
interactions, 145
Microsoft Azure, 167
potential users, 169
preprocessing text and

messages
intent classification (see

Intent classification,
chatbots)

NER (see Named entity
recognition (NER))

removing punctuation
marks, 148–149

removing stop words,
149–150

responses, 165
tokenization, 148

process flowchart, 147
rule-based approach, 166
user sentiments, 169

https://doi.org/10.1007/978-1-4842-3516-4

214

CIFAR-10 data
image classification, 110
network structure, 111

Computational graph and session
definition, 5
features, 3
Numpy, 4
operations, 4
session, 5
source code, 6
structure phases, 4
working process, 3

Computer Vision API, 198
Content Moderation API, 198
Convolutional neural network

(CNN), 91
activation maps, 94
architectures, 95
CIFAR-10 data, 110
connected layer, 95
filters and image maps, 92
high-level API, 104
input volume, 94
Keras, MNIST data, 105
layers, 91
MNIST data

accuracy function, 103
graph session, 98
helper function, 101
image classification, 98
loss function, 102
model parameters, 99
operations, 101
optimizer function, 103

placeholders model, 100
prediction function, 102
record and print results, 104
train and test set features, 98
training loop, 103
variables, 100

model architecture, 112
models, 97
pooling layers, 94
pretrained models, 113
subsampling, 92, 93
summarization, 94

Count vector, 154
Custom speech service, 143
Custom vision service, 199

D
Digital Imaging and

Communication in
Medicine (DICOM)

definition, 211
file format, 211
FileName.dcm, 212
packages, 212

E
Eigenfaces, 173–174
Emotion API, 199

F
Face analysis, 172
Face detection

Index

215

APIs, 197
definition, 171–172
image from webcam, 177
infinite loop, 177
initializations, 177
OpenCV library, 177
tracking, 179, 181–182

Face recognition
APIs

Amazon’s Amazon
Recognition, 198

Face++, 197
IBM Watson’s Visual

Recognition, 199
KeyLemon, 197
LambdaLabs, 197
Microsoft Azure’s

Face, 198
PixLab, 197

argparse, 182
data set, 183
deep learning, 185–188
definition, 171–172
image files, 183
known training images, 183
OpenCV methods (see OpenCV)
required libraries, 182
transfer learning (see Transfer

learning)
two-phase stage, 171
video frame, 182
video to extract frames, 184

FBI crime data set, 209
Fine-tuning, 188–189

Fisherfaces, 176
Flickr 32/47 Brands Logos, 208

G
Google Cloud Speech API, 137
Google Speech API, 136

H
Houndify API, 138

I, J
IBM Speech to Text API, 138–139
IBM Watson API, 168
IBM Watson services, 144
IBM Watson’s Visual Recognition

API, 199
ImageNet, 207
Intent classification, chatbots, 152

general flow, 152–153
Word2Vec (see Word2Vec)
word embedding, 153–157

K
Keras, 31

deep learning models
compilation, 36
evaluation, 38
load data, 33
model definition, 34
prediction, 38

Index

216

preprocess data, 33
save and reload, 39
steps, 32
summarization, 39
training process, 37

functions
arguments, 202
image processing

function, 201
methods, 204

neural network, 71
steps, 40
TensorFlow, 42

L
Language Understanding

Intelligent Service
(LUIS), 167

LBPHs, see Local binary pattern
histograms (LBPHs)

Linear regression, 58–62, 71
Linguistic Analysis API, 167
Local binary pattern histograms

(LBPHs), 175–176
Logistic regression, 73

classification, 73
fashion MNIST data, 77
Keras neural network, 74
scikit-learn, 74

Logistic regression model, 62
binary classification problem, 49
computation, 51

forward propagation, 52
parameters, 53
perceptron, 50
shallow neural network, 49
sigmoid function, 49
two-layer neural

network, 50
Log-linear model, 69
Long short-term memory

(LSTM), 115, 118
concept of, 118
modes of, 118
sequence prediction

generation, 121
meaning, 119
numeric prediction, 120
sequence-to-sequence

prediction, 121
types, 119

time-series forecasting, 122
vanishing gradient problem, 118

M
Machine learning approach, 166
Matrices, 16
Melfrequency cepstral coefficient

(MFCC)
audio convertion, 129
classifier, speech recognition,

132–133
features in Python, 130
parameters, 130–131

Microsoft Azure, 143, 167

Keras (cont.)

Index

217

Microsoft Azure’s Face API, 198
Microsoft Common Objects in

Context (MS COCO), 207, 209
MNIST data, 84, 207

image classification, 105
model architecture, 108
network structure, 107

Multilayer perceptron
(MLP), 45, 47, 65

artificial neural network, 46
backpropagation, 48
flowchart, 66
Iris data, 80

sequential model, 81
source code, 80

libraries, 66
linear model, 48
logistic regression (see Logistic

regression model)
MNIST data, 84
neural network, 47, 48
randomly generated data, 88
single-input vector, 48
single-layer perceptron, 47
training and testing, 68

N
Named entity recognition (NER)

definition, 150
MITIE NER (pretrained), 151
MITIE NER (self-trained),

151–152
Stanford NER, 150

O
OpenCV

eigenfaces, 173–174
fisherfaces, 176
LBPHs, 175–176
methods, face

recognition, 172–173

P, Q
PASCAL VOC, 208
PocketSphinx, 135
pyttsx, 140

R
Randomly generated data, 88
Recurrent neural networks

(RNNs), 115
architecture, 115
concept of, 115
connections, 117
sequence, 116

ReLU6 function, 20
ReLU and ELU functions, 19

S
SAPI, 140
Speaker identification API, 143
Spectrograms

classifier, speech recognition,
132–133

convert audio files to images,
133–134

Index

218

definition, 131
speech sample, 134

Speech analytics, 144
SpeechLib, 140–141
Speech-to-text conversion

data, 128
description, 128
features, 128
MFCC (see Melfrequency

cepstral coefficient
(MFCC))

open source packages, 135
Google Cloud Speech, 137
Google Speech, 136
Houndify, 138
IBM Speech to Text API,

138–139
Microsoft Bing Speech, 139
PocketSphinx, 135
Wit.ai API, 137

parameters, 130–131
spectrograms (see

Spectrograms)
vocal tract, 128

Stop words, 149–150

T, U
TensorFlow, 1

activation function
demonstration, 17
ReLU6, 20
ReLU and ELU functions, 19

tangent hyperbolic and
sigmoid, 18

computational graph and
session, 3

constants, 6
features, 1
installation, 2
loss(cost) functions, 22

list of, 23
source code, 23

matrices, 16
metrics

evaluation, 28
list of, 29
source code, 28

vs. Numpy, 4
optimizers, 25

adaptive
techniques, 25

linear regression, 25
list of, 27
loss function, 26

placeholders, 9
tensor (see Tensors)
variables, 7

Tensors, 2
creation, 12
fixed tensors, 13
random, 15
sequence, 14

Term Frequency-Inverse
Document Frequency
(TF-IDF), 154–157

Text Analytics API, 167

Spectrograms (cont.)

Index

219

Text-to-speech conversion
audio cutting code, 141–142
cognitive service providers

Amazon Cognitive
Services, 143–144

IBM Watson services, 144
Microsoft Azure, 143

pyttsx, 140
SAPI, 140
SpeechLib, 140–141

TF-IDF, see Term Frequency-
Inverse Document
Frequency (TF-IDF)

Transfer learning
cache file, 191
classify images, 189, 191
definition, 188–189
Inception v3 model, 189
pretrained model, 190
required libraries, 189
storage directory, 189
transfer values

confusion matrix, 194
helper function, batch

training, 193
helper function,

classifications, 195
neural network, 192
optimization method, 192, 193
run the file, 196
TensorFlow run, 192
transfer_value_cache

function, 191

Translator speech API, 143
Translator Text API, 167
Tokenization, 148

V
Video API, 199
Video Indexer, 199

W, X
Web Language Model API, 167
WER, see Word error rate (WER)
Wit.ai API, 137
Word2Vec

convolutional neural
network, 161

Gensim package, 162–163
GloVe and CBOW, 157
intent classifier, CNN, 157,

159–161
pretrained models and

parameters, 164–165
unique feature, 163

Word embedding
count vector, 154
definition, 153
TF-IDF, 154–157

Word error rate (WER), 135

Y, Z
YouTube faces, 208

Index

	Table of Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Chapter 1: Basics of TensorFlow
	Tensors
	Computational Graph and Session
	Constants, Placeholders, and Variables
	Placeholders
	Creating Tensors
	Fixed Tensors
	Sequence Tensors
	Random Tensors

	Working on Matrices
	Activation Functions
	Tangent Hyperbolic and Sigmoid
	ReLU and ELU
	ReLU6

	Loss Functions
	Loss Function Examples
	Common Loss Functions

	Optimizers
	Loss Function Examples
	Common Optimizers

	Metrics
	Metrics Examples
	Common Metrics

	Chapter 2: Understanding and Working with Keras
	Major Steps to Deep Learning Models
	Load Data
	Preprocess the Data
	Define the Model
	Compile the Model
	Fit the Model
	Evaluate Model
	Prediction
	Save and Reload the Model
	Optional: Summarize the Model

	Additional Steps to Improve Keras Models
	Keras with TensorFlow

	Chapter 3: Multilayer Perceptron
	Artificial Neural Network
	Single-Layer Perceptron
	Multilayer Perceptron
	Logistic Regression Model

	Chapter 4: Regression to MLP in TensorFlow
	TensorFlow Steps to Build Models
	Linear Regression in TensorFlow
	Logistic Regression Model
	Multilayer Perceptron in TensorFlow

	Chapter 5: Regression to MLP in Keras
	Log-Linear Model
	Keras Neural Network for Linear Regression
	Logistic Regression
	scikit-learn for Logistic Regression
	Keras Neural Network for Logistic Regression
	Fashion MNIST Data: Logistic Regression in Keras

	MLPs on the Iris Data
	Write the Code
	Build a Sequential Keras Model

	MLPs on MNIST Data (Digit Classification)
	MLPs on Randomly Generated Data

	Chapter 6: Convolutional Neural Networks
	Different Layers in a CNN
	CNN Architectures

	Chapter 7: CNN in TensorFlow
	Why TensorFlow for CNN Models?
	TensorFlow Code for Building an Image Classifier for MNIST Data
	Using a High-Level API for Building CNN Models

	Chapter 8: CNN in Keras
	Building an Image Classifier for MNIST Data in Keras
	Define the Network Structure
	Define the Model Architecture

	Building an Image Classifier with CIFAR-10 Data
	Define the Network Structure

	Define the Model Architecture
	Pretrained Models

	Chapter 9: RNN and LSTM
	The Concept of RNNs
	The Concept of LSTM
	Modes of LSTM
	Sequence Prediction
	Sequence Numeric Prediction
	Sequence Classification
	Sequence Generation
	Sequence-to-Sequence Prediction

	Time-Series Forecasting with the LSTM Model

	Chapter 10: Speech to Text and Vice Versa
	Speech-to-Text Conversion
	Speech as Data
	Speech Features: Mapping Speech to a Matrix
	Spectrograms: Mapping Speech to an Image
	Building a Classifier for Speech Recognition Through MFCC Features
	Building a Classifier for Speech Recognition Through a Spectrogram
	Open Source Approaches
	Examples Using Each API
	Using PocketSphinx
	Using the Google Speech API
	Using the Google Cloud Speech API
	Using the Wit.ai API
	Using the Houndify API
	Using the IBM Speech to Text API
	Using the Bing Voice Recognition API

	Text-to-Speech Conversion
	Using pyttsx
	Using SAPI
	Using SpeechLib
	Audio Cutting Code

	Cognitive Service Providers
	Microsoft Azure
	Amazon Cognitive Services
	IBM Watson Services

	The Future of Speech Analytics

	Chapter 11: Developing Chatbots
	Why Chatbots?
	Designs and Functions of Chatbots
	Steps for Building a Chatbot
	Preprocessing Text and Messages
	Tokenization
	Removing Punctuation Marks
	Removing Stop Words
	Named Entity Recognition
	Using Stanford NER
	Using MITIE NER (Pretrained)
	Using MITIE NER (Self-Trained)

	Intent Classification
	Word Embedding
	Count Vector
	Term Frequency-Inverse Document Frequency (TF-IDF)

	Word2Vec

	Building the Response

	Chatbot Development Using APIs
	Cognitive Services of Microsoft Azure
	Amazon Lex
	IBM Watson

	Best Practices of Chatbot Development
	Know the Potential Users
	Read the User Sentiments and Make the Bot Emotionally Enriching

	Chapter 12: Face Detection and Recognition
	Face Detection, Face Recognition, and Face Analysis
	OpenCV
	Eigenfaces
	LBPH
	Fisherfaces

	Detecting a Face
	Tracking the Face
	Face Recognition
	Deep Learning–Based Face Recognition
	Transfer Learning
	Why Transfer Learning?
	Transfer Learning Example
	Calculate the Transfer Value

	APIs

	Appendix 1: Keras Functions for Image Processing

	Appendix 2: Some of the Top Image Data Sets Available

	Appendix 3: Medical Imaging: DICOM File Format
	Why DICOM?
	What Is the DICOM File Format?

	Index

